A class to represent the results of Gaussian kernel-based quadratic distance tests. This includes the normality test, the two-sample test statistics and the k-sample tests.
Slots
method
String indicating the kernel-based quadratic distance test performed.
Un
The value of the test U-statistic.
Vn
The value of the test V-statistic.
H0_Un
A logical value indicating whether or not the null hypothesis is rejected according to U-statistic.
H0_Vn
A logical value indicating whether or not the null hypothesis is rejected according to Vn.
data
List of samples X (and Y).
CV_Un
The critical value computed for the test Un.
CV_Vn
The critical value computed for the test Vn.
cv_method
The method used to estimate the critical value (one of "subsampling", "permutation" or "bootstrap").
h
A list with the value of bandwidth parameter used for the Gaussian kernel. If the function
select_h
is used, then also the matrix of computed power values and the resulting power plot are provided.B
Number of bootstrap/permutation/subsampling replications.
var_Un
exact variance of the kernel-based U-statistic.
See also
kb.test()
for the function that generates this class.
Examples
# create a kb.test object
x <- matrix(rnorm(100),ncol=2)
y <- matrix(rnorm(100),ncol=2)
# Normality test
kb.test(x, h=0.5)
#>
#> Kernel-based quadratic distance Normality test
#> U-statistic V-statistic
#> ------------------------------------------------
#> Test Statistic: 1.310854 0.7979308
#> Critical Value: 2.4409 6.071062
#> H0 is rejected: FALSE FALSE
#> Selected tuning parameter h: 0.5
#>
# Two-sample test
kb.test(x,y,h=0.5, method="subsampling",b=0.9)
#>
#> Kernel-based quadratic distance two-sample test
#> U-statistic Dn Trace
#> ------------------------------------------------
#> Test Statistic: 0.1153108 0.133021
#> Critical Value: 1.407721 1.625753
#> H0 is rejected: FALSE FALSE
#> CV method: subsampling
#> Selected tuning parameter h: 0.5
#>