Descriptive statistics for the clusters identified by the Poisson kernel-based clustering.
Source:R/clustering_functions.R
stats_clusters.Rd
Method for objects of class pkbc
which computes some
descriptive for each variable with respect to the detected groups.
Method for objects of class pkbc
which computes descriptive
statistics for each variable with respect to the detected groups.
Arguments
- object
Object of class
pkbc
.- ...
possible additional inputs
- k
Number of clusters to be used.
Details
The function computes mean, standard deviation, median, inter-quantile range, minimum and maximum for each variable in the data set given the final membership assigned by the clustering algorithm.
Examples
#We generate three samples of 100 observations from 3-dimensional
#Poisson kernel-based densities with rho=0.8 and different mean directions
dat<-matrix(rnorm(300),ncol=3)
#Perform the clustering algorithm
pkbc_res<- pkbc(dat, 3)
stats_clusters(pkbc_res, 3)
#> [[1]]
#> Group 1 Group 2 Group 3 Overall
#> mean -0.53360502 0.2185515 0.007405148 0.04344402
#> sd 0.34258917 0.5269849 NA 0.58084656
#> median -0.55364837 0.2151044 0.007405148 0.07318718
#> IQR 0.53206272 0.9127813 0.000000000 0.93759633
#> min -0.99487956 -0.9642025 0.007405148 -0.99487956
#> max 0.07466077 0.9873736 0.007405148 0.98737364
#>
#> [[2]]
#> Group 1 Group 2 Group 3 Overall
#> mean 0.1608868 -0.1893987 0.8593866 -0.0983452
#> sd 0.3330494 0.6198886 NA 0.5890662
#> median 0.1009154 -0.3009186 0.8593866 -0.1183249
#> IQR 0.5036676 0.9810143 0.0000000 1.0017535
#> min -0.4511650 -0.9888086 0.8593866 -0.9888086
#> max 0.7908170 0.9928995 0.8593866 0.9928995
#>
#> [[3]]
#> Group 1 Group 2 Group 3 Overall
#> mean -0.62082799 0.09072061 -0.5112727 -0.0789555
#> sd 0.29913303 0.50819936 NA 0.5547490
#> median -0.65141402 0.08038502 -0.5112727 -0.1405382
#> IQR 0.47845791 0.77660008 0.0000000 0.8655454
#> min -0.95185464 -0.99561644 -0.5112727 -0.9956164
#> max -0.09110684 0.96905979 -0.5112727 0.9690598
#>