Cluster spherical observations using a mixture of Poisson kernel-based densities
Source:R/clustering_functions.R
predict.pkbc.Rd
Obtain predictions of membership for spherical observations based on a
mixture of Poisson kernel-based densities estimated by pkbc
Usage
# S4 method for pkbc
predict(object, k, newdata = NULL)
Arguments
- object
Object of class
pkbc
- k
Number of clusters to be used.
- newdata
a data.frame or a matrix of the data. If missing the clustering data obtained from the
pkbc
object are classified.
Value
Returns a list with the following components
Memb: vector of predicted memberships of
newdata
Probs: matrix where entry (i,j) denotes the probability that observation i belongs to the k-th cluster.
Examples
# generate data
dat <- rbind(matrix(rnorm(100),ncol=2),matrix(rnorm(100,5),ncol=2))
res <- pkbc(dat,2)
# extract membership of dat
predict(res,k=2)
#> [1] 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 1 1 2 1 2 2 2 2
#> [38] 2 2 2 1 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
# predict membership of new data
newdat <- rbind(matrix(rnorm(10),ncol=2),matrix(rnorm(10,5),ncol=2))
predict(res, k=2, newdat)
#> $Memb
#> [1] 1 2 2 2 2 1 1 1 1 1
#>
#> $Probs
#> [,1] [,2]
#> [1,] 0.79214887 0.20785113
#> [2,] 0.09155787 0.90844213
#> [3,] 0.10633003 0.89366997
#> [4,] 0.05939363 0.94060637
#> [5,] 0.11831316 0.88168684
#> [6,] 0.95577420 0.04422580
#> [7,] 0.97150510 0.02849490
#> [8,] 0.96104005 0.03895995
#> [9,] 0.84807303 0.15192697
#> [10,] 0.95487786 0.04512214
#>