Poisson kernel-based quadratic distance test of Uniformity on the sphere
Source:R/pk.test.R
pk.test.Rd
This function performs the kernel-based quadratic distance goodness-of-fit
tests for Uniformity for multivariate spherical data x
on
\(\mathcal{S}^{d-1}\) using the Poisson kernel
with concentration parameter rho
.
The Poisson kernel-based test for uniformity exhibits excellent results
especially in the case of multimodal distributions, as shown in the example
of the Uniformity test on the Sphere vignette.
Usage
pk.test(x, rho, B = 300, Quantile = 0.95)
# S4 method for ANY
pk.test(x, rho, B = 300, Quantile = 0.95)
# S4 method for pk.test
show(object)
Arguments
- x
A numeric \((n \times d)\)-matrix of \(n\) data points on the Sphere \(\mathcal{S}^(d-1)\) as rows.
- rho
Concentration parameter of the Poisson kernel function.
- B
Number of Monte Carlo iterations for critical value estimation of Un (default: 300).
- Quantile
The quantile to use for critical value estimation, 0.95 is the default value.
- object
Object of class
pk.test
Value
An S4 object of class pk.test
containing the results of the
Poisson kernel-based tests. The object contains the following slots:
method
: Description of the test performed.x
Data matrix.Un
The value of the U-statistic.CV_Un
The empirical critical value for Un.H0_Vn
A logical value indicating whether or not the null hypothesis is rejected according to Un.Vn
The value of the V-statistic Vn.CV_Vn
The critical value for Vn computed following the asymptotic distribution.H0_Vn
A logical value indicating whether or not the null hypothesis is rejected according to Vn.rho
The value of concentration parameter used for the Poisson kernel function.B
Number of replications for the critical value of the U-statistic Un.
Details
Let \(x_1, x_2, ..., x_n\) be a random sample with empirical distribution function \(\hat F\). We test the null hypothesis of uniformity on the \((d-1)\)-dimensional sphere, i.e. \(H_0:F=G\), where \(G\) is the uniform distribution on the \((d-1)\)-dimensional sphere \(\mathcal{S}^{d-1}\). We compute the U-statistic estimate of the sample KBQD (Kernel-Based Quadratic Distance) $$U_{n}=\frac{1}{n(n-1)}\sum_{i=2}^{n}\sum_{j=1}^{i-1}K_{cen} (\mathbf{x}_{i}, \mathbf{x}_{j}),$$ then the first test statistic is given as $$T_{n}=\frac{U_{n}}{\sqrt{Var(U_{n})}},$$ with $$Var(U_{n})= \frac{2}{n(n-1)} \left[\frac{1+\rho^{2}}{(1-\rho^{2})^{d-1}}-1\right],$$ and the V-statistic estimate of the KBQD $$V_{n} = \frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}K_{cen} (\mathbf{x}_{i}, \mathbf{x}_{j}),$$ where \(K_{cen}\) denotes the Poisson kernel \(K_\rho\) centered with respect to the uniform distribution on the \((d-1)\)-dimensional sphere, that is $$K_{cen}(\mathbf{u}, \mathbf{v}) = K_\rho(\mathbf{u}, \mathbf{v}) -1$$ and $$K_\rho(\mathbf{u}, \mathbf{v}) = \frac{1-\rho^{2}}{\left(1+\rho^{2}- 2\rho (\mathbf{u}\cdot \mathbf{v})\right)^{d/2}},$$ for every \(\mathbf{u}, \mathbf{v} \in \mathcal{S}^{d-1} \times \mathcal{S}^{d-1}\).
The asymptotic distribution of the V-statistic is an infinite combination of weighted independent chi-squared random variables with one degree of freedom. The cutoff value is obtained using the Satterthwaite approximation \(c \cdot \chi_{DOF}^2\), where $$c=\frac{(1+\rho^{2})- (1-\rho^{2})^{d-1}}{(1+\rho)^{d}-(1-\rho^{2})^{d-1}}$$ and $$DOF(K_{cen} )=\left(\frac{1+\rho}{1-\rho} \right)^{d-1}\left\{ \frac{\left(1+\rho-(1-\rho)^{d-1} \right )^{2}} {1+\rho^{2}-(1-\rho^{2})^{d-1}}\right \}.$$. For the \(U\)-statistic the cutoff is determined empirically:
Generate data from a Uniform distribution on the d-dimensional sphere;
Compute the test statistics for
B
Monte Carlo(MC) replications;Compute the 95th quantile of the empirical distribution of the test statistic.
Note
A U-statistic is a type of statistic that is used to estimate a population parameter. It is based on the idea of averaging over all possible distinct combinations of a fixed size from a sample. A V-statistic considers all possible tuples of a certain size, not just distinct combinations and can be used in contexts where unbiasedness is not required.
References
Ding, Y., Markatou, M. and Saraceno, G. (2023). “Poisson Kernel-Based Tests for Uniformity on the d-Dimensional Sphere.” Statistica Sinica. doi:10.5705/ss.202022.0347
Examples
# create a pk.test object
x_sp <- sample_hypersphere(3, n_points=100)
unif_test <- pk.test(x_sp,rho=0.8)
unif_test
#>
#> Poisson Kernel-based quadratic distance test of
#> Uniformity on the Sphere
#> Selected consentration parameter rho: 0.8
#>
#> U-statistic:
#>
#> H0 is rejected: FALSE
#> Statistic Un: 0.4735996
#> Critical value: 1.543174
#>
#> V-statistic:
#>
#> H0 is rejected: FALSE
#> Statistic Vn: 46.27503
#> Critical value: 52.23077
#>