Skip to contents

This function performs the kernel-based quadratic distance goodness-of-fit tests for Uniformity for multivariate spherical data x on \(\mathcal{S}^{d-1}\) using the Poisson kernel with concentration parameter rho.
The Poisson kernel-based test for uniformity exhibits excellent results especially in the case of multimodal distributions, as shown in the example of the Uniformity test on the Sphere vignette.

Usage

pk.test(x, rho, B = 300, Quantile = 0.95)

# S4 method for ANY
pk.test(x, rho, B = 300, Quantile = 0.95)

# S4 method for pk.test
show(object)

Arguments

x

A numeric \((n \times d)\)-matrix of \(n\) data points on the Sphere \(\mathcal{S}^(d-1)\) as rows.

rho

Concentration parameter of the Poisson kernel function.

B

Number of Monte Carlo iterations for critical value estimation of Un (default: 300).

Quantile

The quantile to use for critical value estimation, 0.95 is the default value.

object

Object of class pk.test

Value

An S4 object of class pk.test containing the results of the Poisson kernel-based tests. The object contains the following slots:

  • method: Description of the test performed.

  • x Data matrix.

  • Un The value of the U-statistic.

  • CV_Un The empirical critical value for Un.

  • H0_Vn A logical value indicating whether or not the null hypothesis is rejected according to Un.

  • Vn The value of the V-statistic Vn.

  • CV_Vn The critical value for Vn computed following the asymptotic distribution.

  • H0_Vn A logical value indicating whether or not the null hypothesis is rejected according to Vn.

  • rho The value of concentration parameter used for the Poisson kernel function.

  • B Number of replications for the critical value of the U-statistic Un.

Details

Let \(x_1, x_2, ..., x_n\) be a random sample with empirical distribution function \(\hat F\). We test the null hypothesis of uniformity on the \((d-1)\)-dimensional sphere, i.e. \(H_0:F=G\), where \(G\) is the uniform distribution on the \((d-1)\)-dimensional sphere \(\mathcal{S}^{d-1}\). We compute the U-statistic estimate of the sample KBQD (Kernel-Based Quadratic Distance) $$U_{n}=\frac{1}{n(n-1)}\sum_{i=2}^{n}\sum_{j=1}^{i-1}K_{cen} (\mathbf{x}_{i}, \mathbf{x}_{j}),$$ then the first test statistic is given as $$T_{n}=\frac{U_{n}}{\sqrt{Var(U_{n})}},$$ with $$Var(U_{n})= \frac{2}{n(n-1)} \left[\frac{1+\rho^{2}}{(1-\rho^{2})^{d-1}}-1\right],$$ and the V-statistic estimate of the KBQD $$V_{n} = \frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}K_{cen} (\mathbf{x}_{i}, \mathbf{x}_{j}),$$ where \(K_{cen}\) denotes the Poisson kernel \(K_\rho\) centered with respect to the uniform distribution on the \((d-1)\)-dimensional sphere, that is $$K_{cen}(\mathbf{u}, \mathbf{v}) = K_\rho(\mathbf{u}, \mathbf{v}) -1$$ and $$K_\rho(\mathbf{u}, \mathbf{v}) = \frac{1-\rho^{2}}{\left(1+\rho^{2}- 2\rho (\mathbf{u}\cdot \mathbf{v})\right)^{d/2}},$$ for every \(\mathbf{u}, \mathbf{v} \in \mathcal{S}^{d-1} \times \mathcal{S}^{d-1}\).

The asymptotic distribution of the V-statistic is an infinite combination of weighted independent chi-squared random variables with one degree of freedom. The cutoff value is obtained using the Satterthwaite approximation \(c \cdot \chi_{DOF}^2\), where $$c=\frac{(1+\rho^{2})- (1-\rho^{2})^{d-1}}{(1+\rho)^{d}-(1-\rho^{2})^{d-1}}$$ and $$DOF(K_{cen} )=\left(\frac{1+\rho}{1-\rho} \right)^{d-1}\left\{ \frac{\left(1+\rho-(1-\rho)^{d-1} \right )^{2}} {1+\rho^{2}-(1-\rho^{2})^{d-1}}\right \}.$$. For the \(U\)-statistic the cutoff is determined empirically:

  • Generate data from a Uniform distribution on the d-dimensional sphere;

  • Compute the test statistics for B Monte Carlo(MC) replications;

  • Compute the 95th quantile of the empirical distribution of the test statistic.

Note

A U-statistic is a type of statistic that is used to estimate a population parameter. It is based on the idea of averaging over all possible distinct combinations of a fixed size from a sample. A V-statistic considers all possible tuples of a certain size, not just distinct combinations and can be used in contexts where unbiasedness is not required.

References

Ding, Y., Markatou, M. and Saraceno, G. (2023). “Poisson Kernel-Based Tests for Uniformity on the d-Dimensional Sphere.” Statistica Sinica. doi:10.5705/ss.202022.0347

See also

Examples

# create a pk.test object
x_sp <- sample_hypersphere(3, n_points=100)
unif_test <- pk.test(x_sp,rho=0.8)
unif_test
#> 
#>  Poisson Kernel-based quadratic distance test of 
#>                         Uniformity on the Sphere 
#> Selected consentration parameter rho:  0.8 
#> 
#> U-statistic:
#> 
#> H0 is rejected:  FALSE 
#> Statistic Un:  0.4735996 
#> Critical value:  1.543174 
#> 
#> V-statistic:
#> 
#> H0 is rejected:  FALSE 
#> Statistic Vn:  46.27503 
#> Critical value:  52.23077 
#>