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Abstract
Aweighted likelihood technique for robust estimation of multivariate Wrapped distributions
of data points scattered on a p−dimensional torus is proposed. The occurrence of outliers in
the sample at hand can badly compromise inference for standard techniques such asmaximum
likelihood method. Therefore, there is the need to handle such model inadequacies in the
fitting process by a robust technique and an effective downweighting of observations not
following the assumed model. Furthermore, the employ of a robust method could help in
situations of hidden and unexpected substructures in the data. Here, it is suggested to build
a set of data-dependent weights based on the Pearson residuals and solve the corresponding
weighted likelihood estimating equations. In particular, robust estimation is carried out by
using aClassification EMalgorithmwhoseM-step is enhanced by the computation ofweights
based on current parameters’ values. The finite sample behavior of the proposed method has
been investigated by a Monte Carlo numerical study and real data examples.

Keyword CEM algorithm · Multivariate wrapped distributions · Pearson residuals · Robust
estimators · Torus · Weighted likelihood

1 Introduction

Multivariate circular observations arise commonly in all those fields where a quantity of
interest is measured as a direction or when instruments such as compasses, protractors,
weather vanes, sextants or theodolites are used [24]. Circular (or directional) data can be
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seen as points on the unit circle and represented by angles, provided that an initial direction
and orientation of the circle have been chosen.

These data might be successfully modeled by using appropriate wrapped distributions
such, e.g, the Wrapped Normal or the Wrapped Cauchy on the unit circle. The reader is
pointed to [9,19,25] for modeling and inferential issues on circular data. Wrapping can be
explained as the geometric translation of a distribution with support on R to a space defined
on a circular object, e.g., a unit circle [25].

When data come in a multivariate setting, we might extend the univariate wrapping
around the circle by using a component-wise wrapping of multivariate distributions around
a p−dimensional torus. Let

M =
{
m(x;Ω) = cp|�|− 1

2 h(d(x;μ, �)),Ω = (μ, �),μ ∈ R
p, � ∈ PDS(p)

}

be the elliptically symmetric family of distributions where PDS(p) is the set of all
positive-definite symmetric p × p matrices, cp is a normalization constant depending on
p > 1, h(·) is a non-negative scalar function, called density generating function, and

d(x;μ, �) = [
(x − μ)��−1(x − μ)

]1/2
is the Mahalanobis distance. For example, the

multivariate Normal distribution and the multivariate Student tν distribution belong to this
family choosing h(d) = exp(−d2/2) and h(d) = (1 + d2/ν)−(p+ν)/2, respectively, as
density generating function. As particular case, the multivariate Cauchy distribution can be
obtained for ν = 1. Let X be a multivariate random variable whose distribution belongs to
the family of elliptically symmetric distributions. Then, the distribution of Y = X mod 2π
is

M◦( y) =
∑
j∈Zp

[M( y + 2π j;Ω) − M(2π j;Ω)],

with density function
m◦( y) =

∑
j∈Zp

m( y + 2π j;Ω),

y ∈ (0, 2π]p , Ω = (μ, �), where M(·) andm(·) are the distribution and density function of
X , respectively, and the modulus operator mod is applied component-wise. As a special case,
let X be multivariate Normal, i.e. X ∼ Np(μ, �). Then, the distribution of Y = X mod 2π
is Wrapped Normal and denoted as WNp(μ, �). An appealing property of the Normal
distribution that carries over to theWrapped Normal is its closure with respect to convolution
[7,19]. This property will be particularly relevant in the implementation of our methodology.

Given an i.i.d. sample y1, . . . , yn of size n from Y on the p-torus, likelihood based
inference about the parameters of Wrapped distributions can be trapped in numerical and
computational hindrances since the log-likelihood function

�(Ω) =
n∑

i=1

log

⎡
⎣ ∑

j∈Zp

m( yi + 2π j;Ω)

⎤
⎦ ,

involves the evaluation of an infinite series. [2] proposed an Iterative Reweighted Maximum
Likelihood Estimating Equations algorithm in the univariate setting, that is available in the R
package circular [4]. Algorithms based on the Expectation-Maximization (EM) method
have been used by [15] for parameter estimation in autoregressive models of Wrapped Nor-
mal distributions and by [10], [32] and [14] in a Bayesian framework according to a data
augmentation approach to estimate the missing unobserved wrapping coefficients. An inno-
vative estimation strategy based on EM and Classification EM algorithms has been discussed
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Robust estimation for multivariate wrapped models 227

in [28]. In order to perform maximum likelihood estimation, the wrapping coefficients are
treated as latent variables.

We can think of yi = xi mod 2π where xi is a sample from a random variable whose
distribution belongs to the elliptically symmetric family of distributions. The EM algorithm
works with the complete log-likelihood function given by

�C (Ω) =
n∑

i=1

∑
j∈Zp

vi j logm( yi + 2π j;Ω), (1)

that is characterized by themissing unobservedwrapping coefficients j and vi j is an indicator
of the i th unit having the j vector as wrapping coefficients. The EM algorithm iterates
between an Expectation (E) step and a Maximization (M) step. In the E-step, the conditional
expectation of (1) is obtained by estimating the vi j with the posterior probability that yi has
j as wrapping coefficient based on current parameters’ values, i.e.

vi j = m( yi + 2π j;Ω)∑
b∈Zp m( yi + 2πb;Ω)

, j ∈ Z
p, i = 1, . . . , n.

In the M-step, the conditional expectation of (1) is maximized with respect to Ω . The reader
is pointed to [28] for computational details about such maximization problem for the multi-
variate Wrapped Normal distribution.

An alternative estimation strategy is based on the CEM-type algorithm. The substantial
difference is that the E-step is followed by a C-step (where C stands for classification) in
which vi j is estimated as either 0 or 1 and so that each observation yi is associated to the
most likely wrapping coefficients j i with j i = argmaxb∈Zp vib.

When the sample data is contaminated by the occurrence of outliers, it is well known
that maximum likelihood estimation, also achieved through the implementation of the EM
or CEM algorithm, is likely to lead to unreliable results [13]. Then, there is the need for a
suitable robust procedure providing protection against those unexpected anomalous values.
There have been few attempts to deal with outliers in circular data analysis for univariate
distributions, mainly focused on the VonMises distribution [2,20,21,33]. On the contrary, the
robust technique proposed here is based onmultivariateWrapped distributions and, to the best
of our knowledge, there are no competiting techniques of robust estimation for multivariate
models.

An attractive solution to develop a robust estimation algorithm for multivariate wrapped
distributions would be to modify the likelihood equations in the M-step. Such a modification
could be achieved by the introduction of a set of weights aimed to bound the effect of those
observations deviating from the assumed model. Here, it is suggested to evaluate weights
according to theweighted likelihoodmethodology ([26]).Weighted likelihood is an appealing
robust technique for estimation and testing [5]. The methodology leads to a robust fit and
gives the chance to detect outliers and possible substructures in the data. Furthermore, the
weighted likelihood methodology works in a very satisfactory fashion when combined with
the EM and CEM algorithms, as in the case of mixture models [17,18].

The remainder of the paper is organized as follows. Section 2 gives brief but necessary
preliminaries on weighted likelihood. The weighted CEM algorithm for robust fitting of
multivariate Wrapped models on data on a p−dimensional torus is described in Sect. 3,
while some theoretical properties are discussed in Sect. 3.1. Section 4 reports the results of
some numerical studies, whereas a real data example is discussed in Sect. 5. Concluding
remarks end the paper.
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228 G. Saraceno et al.

2 Preliminaries on weighted likelihood

Let y1, . . . , yn be a random sample of size n drawn from a r.v. Y with distribution function
F and probability (density) function f . Let M = {M( y; θ), θ ∈ � ⊆ R

d , d ≥ 1, y ∈ Y}
be the assumed parametric model, with corresponding densitym( y; θ), and F̂n the empirical
distribution function. Assume that the support of M is the same as that of F and independent
of θ . A measure of the agreement between the true and assumed model is provided by the
Pearson residual function δ( y), with δ( y) ∈ [−1,+∞), [23,26], defined as

δ( y) = δ( y; θ , F) = f ( y)
m( y; θ)

− 1 . (2)

The finite sample counterpart of (2) can be obtained as

δn( y) = δ( y; θ , F̂n) = f̂n( y)
m( y; θ)

− 1 , (3)

where f̂n( y) is a consistent estimate of the true density f ( y). In discrete families of distribu-
tions, f̂n( y) can be driven by the observed relative frequencies [23], whereas in continuous
models one could consider a non parametric density estimate based on the kernel function
k( y; t, h), that is

f̂n( y) =
∫

Y
k( y; t, h)d F̂n(t) . (4)

Moreover, in the continuous case, the model density in (3) can be replaced by a smoothed
model density, obtained by using the same kernel involved in non-parametric density esti-
mation [8,26], that is

m̂( y; θ) =
∫

Y
k( y; t, h)m(t; θ) d t

leading to

δn( y) = δ( y; θ , F̂n) = f̂n( y)
m̂( y; θ)

− 1 . (5)

By smoothing the model, the Pearson residuals in (5) converge to zero with probability one
for every y under the assumedmodel and it is not required that the kernel bandwidth h goes to
zero as the sample size n increases. Large values of the Pearson residual function correspond
to regions of the support Y where the model fits the data poorly, meaning that the observation
is unlikely to occur under the assumedmodel. The reader is pointed to [3,8,26] and references
therein for more details.

Observations leading to large Pearson residuals in (5) are supposed to be down-weighted.
Then, aweight in the interval [0, 1] is attached to each data point, that is computed accordingly
to the following weight function

w(δ( y)) = min

{
1,

[A(δ( y)) + 1]+

δ( y) + 1

}
, (6)

where [·]+ denotes the positive part and A(δ) is the Residual Adjustment Function (RAF,
[8,23,29]). The weights w(δn( y)) are meant to be small for those data points that are in
disagreement with the assumed model. Actually, the RAF plays the role to bound the effect
of large Pearson residuals on the fitting procedure. A(·) is an increasing, twice differentiable,
function in [−1,∞), such that A(0) = 0 and A′(0) = 1.
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Fig. 1 RAF from Power Divergence Measure (left) and corresponding weight function (right) for different
values of τ

The weight function (6) might be based on the families of RAF stemming from the
Symmetric Chi-squared divergence [26], the Generalized Kullback-Leibler divergence [30]

Agkl(δ, τ ) = log(τδ + 1)

τ
, 0 ≤ τ ≤ 1; (7)

or the Power Divergence Measure [11,12]

Apdm(δ, τ ) =
{

τ
(
(δ + 1)1/τ − 1

)
τ < ∞

log(δ + 1) τ → ∞ .

In the latter case, special cases aremaximum likelihood (ML, τ = 1, as theweights become all
equal to one), Hellinger distance (HD, τ = 2), Kullback–Leibler divergence (KL, τ =→ ∞)
and Neyma-s Chi-Square (NCS, τ = −1). The RAF stemming from the Power Divergence
Measure are illustrated in the left panel of Fig. 1. The resultingweight function (6) is unimodal
and declines smoothly to zero as δ( y) → −1 or δ( y) → ∞, as displayed in the right panel
of Fig. 1. See also [29] for further ways of defining RAFs.

According to the chosen RAF, robust estimation can be based on a Weighted Likelihood
Estimating Equation (WLEE), defined as

n∑
i=1

w(δn( yi ); θ , F̂n)s( yi ; θ) = 0 , (8)

where s( yi ; θ) is the individual contribution to the score function. Therefore, weighted likeli-
hood estimation can be thought as a root solving problem. Finding the solution of (8) requires
an iterative weighting algorithm.

Remark 1 Several functions could be defined to bound the effect of large Pearson residuals
rather than using the RAF. However, the use of the RAF is strictly connected to weighted
likelihood estimation. First, this choice is motivated by historical reasons, in the spirit of the
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Fig. 2 Modified RAF from Power Divergence Measure (left) and corresponding weight function (right) for
different values of τ

work by [23,26], among others. Then, the special role played by the RAF is justified in light of
the connection between weighted likelihood estimation and minimum disparity estimation.
Actually, the RAF arises naturally from a minimum disparity estimation problem, although
the construction of the WLEE does not depend on the availability of an objective function
[3].

Remark 2 As pointed out in [29], values of the Pearson Residuals in the interval (0,∞) are
related to outliers, while values in (−1, 0) to inliers. RAFs can act on this last interval in
opposite ways. For instance, the RAF related to the HD leads to downweighting while the
Negative Exponential Disparity (see [23]) leads to an upweigthing of the observations. Since
inliers represent a minor issue for data in p–dimensional torus, we decided to modify our
RAFs in the interval (−1, 0) setting them equal to the identity function. The plots of the
modified RAFs together with the corresponding weights are reported in Fig. 2. We used
these RAFs in our simulations and examples.

The corresponding weighted likelihood estimator θ̂
w
(WLE) is consistent, asymptotically

normal and fully efficient at the assumed model, under some general regularity conditions
pertaining the model, the kernel and the weight function [3,5,26]. Its robustness properties
have been established in [23] in connection with minimum disparity problems. It is worth
remarking that under very standard conditions, one can build a simple WLEE matching a
minimum disparity objective function, hence inheriting its robustness properties.

In finite samples, the robustness/efficiency trade-off of weighted likelihood estimation can
be tuned by varying the smoothing parameter h in Eq. (4). Large values of h lead to Pearson
residuals all close to zero and weights all close to one and, hence, large efficiency, since
f̂n( y) is stochastically close to the postulated model. On the other hand, small values of h
make f̂n( y) more sensitive to the occurrence of outliers and the Pearson residuals become
large for those data points that are in disagreement with the model. On the contrary, the shape
of the kernel function k( y; t, h) has a very limited effect.
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Robust estimation for multivariate wrapped models 231

Forwhat concerns the tasks of testing and setting confidence regions, aweighted likelihood
counterpart of the classical likelihood ratio test, and its asymptotically equivalent Wald and
Score versions, can be established. Note that, all share the standard asymptotic distribution
at the true model, according to the results stated in [5], that is

Λ(θ) = 2
n∑

i=1

wi

[
�(θ̂

w; yi ) − �(θ; yi )
]

p→ χ2
p ,

with wi = w(δn( yi ); θ̂
w
, F̂n). Profile tests can be obtained as well.

3 Aweighted CEM algorithm

As previously stated in the “Introduction” [28] provided effective iterative algorithms to fit
a multivariate Wrapped distribution on the p-dimensional torus. Here, robust estimation is
achieved by a suitable modification of their CEM algorithm, consisting in a weighting step
before performing the M-step, in which data-dependent weights are evaluated according to
(6) yielding a WLEE (8) to be solved in the M-step.

In the special case of the multivariate Wrapped Normal distribution, the construction of
Pearson residuals in (5) involves a multivariate Wrapped Normal kernel with covariance
matrix hΛ. Since the family of multivariate Wrapped Normal is closed under convolution,
then the smoothed model density is still Wrapped Normal with covariance matrix � + hΛ.
Here, we set Λ = � so that h can be a constant independent of the variance-covariance
structure of the data. The problem becomes more challenging if other elliptically symmetric
distributions are considered, since smoothed densities require numerical evaluations.

The weighted CEM algorithm is structured as follows:

0 Initialization. Starting values can be obtained by maximum likelihood estimation eval-
uated over a randomly chosen subset. The subsample size is expected to be as small as
possible in order to increase the probability to get an outliers’ free initial subset but large
enough to guarantee estimation of the unknown parameters. A starting solution forμ can
be obtained by the circular mean, whereas the diagonal entries of � can be initialized as
−2 log(ρ̂r ), where ρ̂r is the sample mean resultant length and the off-diagonal elements
by ρc( yr , ys)σ

(0)
rr σ

(0)
ss (r �= s), where ρc( yr , ys) is the circular correlation coefficient,

r = 1, 2, . . . , p and s = 1, 2, . . . , p, see [19] pag.176,equation8.2.2. In order to avoid
the algorithm to be dependent on initial values, a simple and common strategy is to run the
algorithm from a number of starting values using the bootstrap root searching approach
as in [26]. A criterion to choose among different solutions will be illustrated in Sect. 5.

1. E-step. Based on current parameters’ values, first evaluate posterior probabilities

vi j = m( yi + 2π j;Ω)∑
b∈Zp m( yi + 2πb;Ω)

, j ∈ Z
p, i = 1, . . . , n ,

2. C-step. Set j i = argmaxb∈Zp vib and vi j = 1 for j = j i , and vi j = 0 otherwise. Note
that, at each iteration the classification algorithm provides also an estimate of the original
unobserved sample obtained as x̂i = yi + 2π j i , i = 1, . . . , n.

3. W-step (weighting step). Based on current parameters’ values, compute Pearson residuals
according to (5) and evaluate the weights as

wi = w(δn( yi ),Ω, F̂n).
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232 G. Saraceno et al.

4. M-step. Update parameters’ values by solving the WLEE

n∑
i=1

wi s( yi + 2π j i ; θ) =
n∑

i=1

wi s(x̂i ; θ) = 0 ,

conditionally on j i (i = 1, . . . , n), with s(x; θ) = ∂ logm(x; θ)/∂θ�. In the Normal
case, theWLEE returns weighted mean and variance-covariance matrix with weightswi ,
given by

μ̂i =
∑n

i=1 wi x̂i∑n
i=1 wi

,

�̂ =
∑n

i=1 wi (x̂i − μ̂i )(x̂ j − μ̂ j )
�

∑n
i=1 wi

.

3.1 Properties

The WLEE to be solved in the M-step is of the type (8). Let denote it by Ψn = 0. Let θ f be
such that f ( y) is close to m◦( y; θ f ), that is θ f is implicitly defined by

Ψ =
∫

w(δ( y))s( y + 2π j; θ f ) dF( y) = 0,

given j . We have the following results:

(i) √
n (Ψn − Ψ )

d→ N (0, V (θ))

(ii)
θ̂w a.s.→ θ f

(iii) √
n

(
θ̂w − θ f

)
d→ N (0, B−1(θ f )V (θ f )B

−1(θ f ))

with

V (θ) = lim
n→∞Var

[∫
k((y − Y )/h)A′(δ(y))s(y; θ) dy

]

= Var
[
A′(δ(Y ))s(Y ; θ)

]

and

B(θ) =
∫

A(δ(y))∇2m(y; θ) dy −
∫

A′(δ(y))(δ(y) + 1)s(Y ; θ)s�(Y ; θ)m(y; θ) dy ,

where V (θ) is finite and positive definite and B(θ) is non-zero for θ = θ f . At the true model,
B−1(θ f )V (θ f )B−1(θ f ) coincides with the inverse of the expected Fisher informationmatrix
and the WLE recovers full efficiency. Details about the assumptions and proofs can be
found in [3,22].

In particular, one can also relax the mathematical device of evaluating integrals and their
approximations given by sums on a trimmed set to avoid numerical instabilities due the
occurrence of small (almost null) densities in the tails that would affect the denominator of
Pearson residuals. As stated in [22], trimming is not necessary and could not be considered,
especially in those models where the tails decay exponentially.
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Robust estimation for multivariate wrapped models 233

4 Numerical studies

The finite sample behavior of the proposed weighted CEM has been investigated by some
numerical studies based on 500 Monte Carlo trials each, in the Normal case, with data
drawn from a WNp(μ, �). We set μ = 0, whereas in order to account for the lack of
affine equivariance of the Wrapped Normal model [28], we considered different covariance
structures � as in [6]. In particular, for fixed condition number CN = 20, we obtained
a random correlation matrix R. Then, the correlation matrix R has been converted into the
covariancematrix� = D1/2RD1/2, with D = diag(σ 21p), where σ is a chosen constant and
1p is a p-dimensional vector of ones. Outliers have been generated by shifting a proportion
ε of randomly chosen data points by an amount kε in the direction of the smallest eigenvalue
of �. We considered sample sizes n = 50, 100, 500, dimensions p = 2, 5, contamination
level ε = 0, 5%, 10%, 20%, contamination size kε = π/4, π/2, π and σ = π/8, π/4, π/2.

For each combination of the simulation parameters, we compare the performance of
CEM and weighted CEM algorithms. The weights used in the W-step are computed using
the Generalized Kullback–Leibler RAF in Eq. (7) with τ = 0.1. According to the strategy
described in [5], the bandwidth h has been selected by setting Λ = �, so that h is a constant
independent of the scale of the model. Here, h is obtained so that any outlying observation
located at least three standard deviations away from the mean in a component-wise fashion,
is attached a weight not larger than 0.12 when the rate of contamination in the data has been
fixed equal to 20%. The algorithm has been initialized according to the root search approach
described in [26] based on 15 subsamples of size 10. It is worth remarking here that there are
not other robust proposals to be compared with our method, to the best of our knowledge.

The weighted CEM is assumed to have reached convergence when at the (k + 1)–th
iteration

max

(√
2(1 − cos(μ̂(k) − μ̂

(k+1)
)),max |�̂(k) − �̂(k+1)|

)
< 10−6

where differences are element-wise andmax |�̂(k)−�̂(k+1)|denotes themaximumabsolute
difference in any of the components of the matrix �̂(k) − �̂(k+1). The algorithm has
been implemented so that Zp is replaced by the Cartesian product ×p

s=1J where J =
(−J ,−J + 1, . . . , 0, . . . , J − 1, J ) for some J providing a good approximation. Here we
set J = 3. The algorithm runs on R code [31] available from the authors upon request.

Fitting accuracy has been evaluated according to

(i) the average angle separation ([9])

AS(μ̂) = 1

p

p∑
i=1

(1 − cos(μ̂i − μi )) ,

which ranges in [0, 2], for the mean vector;
(ii) the divergence

Δ(�̂) = trace(�̂�−1) − log(det(�̂�−1)) − p ,

for the variance-covariance matrix. Here, we only report the results stemming from the
challenging situation with n = 100 and p = 5.

Figure 3 displays the average angle separation whereas Fig. 4 gives the divergence to
measure the accuracy in estimating the variance-covariance matrix for the weighted CEM (in
dark grey) and CEM (in light grey). The weighted CEM exhibits a fairly satisfactory fitting
accuracy both under the assumed model (i.e. when the sample at hand is not corrupted by the
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234 G. Saraceno et al.

occurrence of outliers) and under contamination. The robust method outperforms the CEM
method, especially in the estimation of the variance–covariance components. The algorithm
results in biased estimates for both the mean vector and the variance–covariance matrix only
for the large contamination rate ε = 20%, with small contamination size and a large σ .
Actually, in this data constellation outliers are not well separated from the group of genuine
observations. A similar behavior has been observed for the other sample sizes. Complete
results are made available in the “Supplementary Material”.

4.1 Monitoring the smoothing parameter

As pointed out in Sect. 2, in finite samples the robustness/efficiency trade-off of weighted
likelihood estimation can be tuned by varying the smoothing parameter h used in kernel
density estimation. In the numerical studies above, h has been selected according to an
objective criterion (see Section 4.1 in [26] for the details). However, practitioners are advised
to monitor the behavior of weighted likelihood estimation as h varies in a reasonable range
[16]. Here, the procedure is illustrated over a sample of size n = 100 from the previous
numerical studies with σ = π

4 , ε = 10%, kε = π
2 .

Figure 5 shows the trajectories of the weights at convergence corresponding to different
values of h in the range [0.001, 0.25]. In particular, the weights relative to the generated
outliers are in dark grey, whereas those for the genuine observations are displayed in light
grey. Outliers are correctly downweighted for several values of h and, as expected, beyond
a certain value the analysis becomes not robust. On the other side, weights corresponding to
genuine observations rapidly goes to unity for increasing h. The (red) dashed line indicates
the value of h used in the simulation study. Such a value correctly downweights the outlying
observations.

5 Real data example: protein data

The data under consideration [27] contain bivariate information about 63 protein domains that
were randomly selected from three remote Protein classes in the Structural Classification of
Proteins (SCOP). In the following, we consider the data set corresponding to the 39th protein
domain. A bivariateWrappedNormal has been fitted to the data at hand by using theweighted
CEM algorithm, based on a Generalized Kullback-Leibler RAF with τ = 0.25 and J = 6.
The tasks of bandwidth selection and initialization have been resolved according to the same
strategy described above in Sect. 4.

The inspection of the data suggests the presence of at least a couple of clusters that make
the data non homogeneous.

Figure 6 displays the data on a flat torus together with fitted means and 95% confidence
regions corresponding to three different roots of the WLEE (that are illustrated by different
colors): one root gives location estimate μ1 = (1.85, 2.34) and a positive correlation ρ1 =
0.79; the second root gives location estimate μ2 = (1.85, 5.86) and a negative correlation
ρ2 = −0.80; the third root gives location estimate μ3 = (1.61, 0.88) and correlation ρ3 =
−0.46. The first and second roots are very close to maximum likelihood estimates obtained
in different directions when unwrapping the data: this is evident from the shift in the second
coordinate of the mean vector and the change in the sign of the correlation. In both cases the
data exhibit weights larger than 0.5, except in few cases, corresponding to the most extreme
observations, as displayed in the first two panels of Fig. 7. In none of the two cases the bulk
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Fig. 3 Distribution of average angle separation for n = 100 and p = 5 using weighted CEM (in dark grey)
and the CEM (in light grey). The contamination rate ε is given on the horizontal axis. Increasing contamination
size kε from left to right, increasing σ from top to bottom

of the data corresponds to an homogeneous sub-group. On the contrary, the third root is
able to detect an homogeneous substructure in the sample, corresponding to the most dense
region in the data configuration. A weight close to zero is attached to almost half of the data
points, as shown in the third panel of Fig. 7. These findings still confirm the ability of the
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Fig. 4 Distribution of the divergence measure for n = 100 and p = 5 using the weighted CEM (in dark grey)
and the CEM (in light grey). The contamination rate ε is given on the horizontal axis. Increasing contamination
size kε from left to right, increasing σ from top to bottom

weighted likelihood methodology to tackle such uneven patterns as a diagnostic of hidden
substructures in the data. In order to select one of the three roots we have found, we consider
the strategy discussed in [1], that is, we select the root leading to the lowest fitted probability
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Fig. 5 Final weights of contaminated observations (dark grey) and uncontaminated observations (light grey)
computed with respect to the smoothing parameter h. The dashed (red) line indicates the value used in the
simulation study
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Fig. 6 Protein data. Fitted means (+) and 95% confidence regions corresponding to three different roots from
weighted CEM (J = 6)
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Fig. 7 Protein data. Weights corresponding to three different roots from weighted CEM

Prob
Ω̂

(
δn(y; Ω̂, F̂n) < −0.95

)
.

This probability has beenobtained bydrawing5000 samples from thefitted bivariateWrapped
Normal distribution for each of the three roots. The criterion correctly leads to choose the
third root, for which an almost null probability is obtained, wheres the fitted probabilities for
the first and second root are 0.204 and 0.280, respectively.

6 Conclusions

In this paper an effective strategy for robust estimation of multivariate Wrapped models on
a p−dimensional torus has been presented. The method inherits the good computational
properties of the CEM algorithm developed in [28] jointly with the robustness properties
stemming from the employ of Pearson residuals and the weighted likelihood methodology.
In this respect, it is particularly appealing the opportunity toworkwith a family of distribution
that is close under convolution and allows to parallel the procedure onewould have developed
on the real line by using the multivariate normal distribution. The proposed weighted CEM
works satisfactory at least in small to moderate dimensions, both on synthetic and real data.
It is worth stressing that the method can be easily extended to other multivariate wrapped
models.
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