
Vol.:(0123456789)

AStA Advances in Statistical Analysis
https://doi.org/10.1007/s10182-024-00494-2

1 3

ORIGINAL PAPER

Weighted likelihood methods for robust fitting of wrapped 
models for p‑torus data

Claudio Agostinelli1 · Luca Greco2 · Giovanni Saraceno3

Received: 28 February 2023 / Accepted: 12 February 2024 
© Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
We consider, robust estimation of wrapped models to multivariate circular data that 
are points on the surface of a p-torus based on the weighted likelihood methodology. 
Robust model fitting is achieved by a set of weighted likelihood estimating equa-
tions, based on the computation of data dependent weights aimed to down-weight 
anomalous values, such as unexpected directions that do not share the main pattern 
of the bulk of the data. Weighted likelihood estimating equations with weights eval-
uated on the torus or obtained after unwrapping the data onto the Euclidean space 
are proposed and compared. Asymptotic properties and robustness features of the 
estimators under study have been studied, whereas their finite sample behavior has 
been investigated by Monte Carlo numerical experiment and real data examples.
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1 Introduction

Multivariate circular data arise commonly in many different fields, including the 
analysis of wind directions (Lund 1999; Agostinelli 2007), animal movements 
(Ranalli and Maruotti 2020; Rivest et al. 2016), handwriting recognition (Bahlmann 
2006), people orientation (Baltieri et al. 2012), cognitive and experimental psychol-
ogy (Warren et  al. 2017), human motor resonance (Cremers and Klugkist 2018), 
neuronal activity (Rutishauser et al. 2010) and protein bioinformatics (Mardia et al. 
2007, 2012; Eltzner et al. 2018). The reader is pointed to Mardia and Jupp (2000a); 
Jammalamadaka and SenGupta (2001); Pewsey et  al. (2013) for a general review. 
The data can be thought as points on the surface of a p-torus, embedded in a (p + 1)

-dimensional space, whose surface is obtained by revolving the unit circle in a p−
dimensional manifold. A p-torus is topologically equivalent to a product of a circle 
p times by itself, written � p, p ≥ 1 (Munkres 2018). The peculiarity of torus data is 
periodicity, which reflects in the boundedness of the sample space and often of the 
parametric space.

In order to illustrate the nature of torus data, let us consider a bivariate exam-
ple, concerning n = 490 backbone torsion angle pairs (�,�) for the protein 8TIM. 
Data are available from the R package BAMBI (Chakraborty and Wong 2021) and 
are extracted from the vast Protein Data Bank (Bourne 2000). The protein is an 
example of a TIM barrel folded into eight �-helices and eight parallel �-strands, 
alternating along the protein tertiary structure. It gets its name from the enzyme tri-
ose-phosphate isomerase, a conserved metabolic enzyme (Chang et al. 1993). The 
data are shown in Fig.  1 according to the Ramachandran plot of the angles over 
[0, 2�) × [0, 2�) , in the right panel, or [−�,�) × [−�,�) , in the left panel. Clearly, 
this type of graphical display is not unique and depends on how the angles are repre-
sented. Actually, the Ramachandran plot does not allow to show the intrinsic perio-
dicity of the angles. In order to account for such wraparound nature of the data, one 
should topologically glue both pairs of opposite edges together with no twists. Then, 

Fig. 1  8TIM protein data. Ramachandran plot over [0, 2�) × [0, 2�) (right) and over [−�,�) × [−�,�)
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the resulting surface is that of a torus with one hole (say, of genus one) in three 
dimensions. The data on the torus are shown in Fig. 2 from two different perspec-
tives. The limitations of the Ramachandran plot in the two dimensional space can be 
circumvented by unwrapping the data on a flat torus, that is the angles are revolved 
around the unit circle a fixed number of times in each dimension and transformed 
into linear data, according to x = y + 2�j , for a given j ∈ ℤ

2 . This representation is 
shown in Fig. 3 where the data are given for different choices of j ∈ ℤ

2 : then, the 
same data structure repeats itself to reflect the periodic nature of the data. Dotted 
lines give multiples of �.

The problem of modeling circular data has been tackled through suitable dis-
tributions, such as the von Mises (Mardia 1972). In a different fashion, in this 

Fig. 2  8TIM protein data. Bivariate angles as points on the surface of a torus from two different perspec-
tives
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Fig. 3  8TIM protein data. Flat torus plot. The dotted lines give multiples of ∓�
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paper, we focus our attention on the family of wrapped distributions (Mardia 
and Jupp 2000a). Wrapping is a popular method to define distributions for torus 
data. Let X = (X1,X2,… ,Xp) be a linear random vector with distribution func-
tion M(x;�) and corresponding probability density function m(x;�) , with x ∈ ℝ

p 
and � ∈ Θ . Assume that each component is wrapped around the unit circle, i.e., 
Yd = Xd mod 2�, d = 1, 2,… , p , where mod denotes the modulus operator. Then, 
the distribution of Y = X mod 2� is a p−variate wrapped distribution with distribu-
tion function

and probability density function

y = (y1, y2,… , yp) ∈ [0, 2�)p , j = (j1, j2,… , jp) ∈ ℤ
p . The p-dimensional vector j is 

the vector of wrapping coefficients, that, if it was known, would describe how many 
times each component of the p-toroidal data point was wrapped. In other words, if 
we knew j along with y , we would obtain the unwrapped data x = (x1, x2,… , xp) 
as x = y + 2�j . Hereafter, we concentrate on unimodal and elliptically symmetric 
densities of the form

where h(⋅) is a strictly decreasing and nonnegative function, � = (�,Σ) , 
� = (�1,�2,… ,�p) is a location vector and Σ is a p × p positive definite scatter 
matrix. When h(t) = exp(−t∕2) , the multivariate normal distribution is recovered 
as a special case. Applying the component-wise wrapping of a p-variate normal 
distribution X ∼ Np(�,Σ) onto a p-dimensional torus, one obtains the multivariate 
wrapped normal (WN), Y ∼ WNp(�,Σ) , with mean vector � and variance-covariance 
matrix Σ . Without loss of generality, we let � ∈ [0, 2�)p to ensure identifiability.

Torus data are not immune to the occurrence of outliers, which are unexpected 
values, such as angles or directions, that do not share the main pattern of the bulk 
of the data. The key to understanding circular outliers lies in the intrinsic periodic 
nature of the data. In particular, outliers in the circular setting differ from those in 
the linear case, in that angular distributions have bounded support. For classical lin-
ear data in a Euclidean space, one single outliers can lead the mean to minus or 
plus infinity. In contrasts, breakdown occurs in directional data when contamination 
causes the mean direction to change by at most � (Davies and Gather 2005, 2006). 
Marginally, the occurrence and subsequent detection of anomalous circular data 
points clearly depends on the concentration of the data around some main direction. 
The lower the concentration, the more outliers are unlikely to occur and have a little 
effect on estimates of location or spread. Furthermore, in a multivariate framework, 
outliers can violate the main correlation structures of the data and lead to misleading 
associations. Therefore, when outliers do contaminate the torus data at hand, they 

M◦(y;�) =
∑

j∈ℤp

[
M(y + 2�j;�) −M(2�j;�)

]

(1)m◦(y;�) =
∑

j∈ℤp

m(y + 2�j;�)

(2)m(x;�) ∝ |Σ|−1∕2h
(
(x − �)⊤Σ−1(x − �)

)
,
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can very badly affect likelihood based estimation, leading to unreliable inferences. 
The problem of robust fitting for directional data has been addressed, since the 
works of Lenth (1981); Ko and Guttorp (1988); He and Simpson (1992); Agostinelli 
(2007), mainly for univariate problems. A very first attempt to develop a robust par-
ametric technique well suited for p-torus data and wrapped models can be found in 
Saraceno et al. (2021). A second approach has been discussed in Greco et al. (2021). 
They are both based on a set of weighted data-augmented estimating equations that 
are solved using a classification expectation-maximization (CEM) algorithm, whose 
M-step is enhanced by the computation of a set of data dependent weights aimed to 
down-weight outliers.

The main contributions of this paper can be summarized as follows. We gener-
alize, the approach in Saraceno et al. (2021) building a set of weighted likelihood 
estimating equations (WLEE, Markatou et al. 1998) as weighted counterparts of the 
likelihood equations. The technique is developed in a very general framework for 
unimodal and elliptically symmetric distributions and not limited to the WN model. 
The resulting weighted likelihood estimator (WLE) can be evaluated according to 
different weighting schemes. We shed new light on the nature, definition and treat-
ment of torus outliers. In details, it is shown how the different approaches to evalu-
ate weights can be justified in light of the current definition of outliers in use. We 
present and discuss a new strategy to obtain weights for robust fitting based on the 
unwrapped data, after imputing the vector of wrapping coefficients j . It is shown 
that the estimating equations based on the unwrapped data can be properly used for 
sufficiently enough concentrated distributions on the torus. Furthermore, this work 
is meant to be a step forward the existing literature also because it is accompanied 
by formal theoretical results about the asymptotic behavior and the robustness prop-
erties of the proposed estimators.

The remainder of the paper is organized according to the following structure. 
Some background on maximum likelihood estimation of wrapped models is given in 
Sect. 2. The concept of outlyingness for torus data is shown in Sect. 3. Methods for 
weighted likelihood fitting are shown in Sect. 4. Theoretical properties are shown 
in Sect. 5. Numerical studies are shown in Sect. 6. Real data examples are given in 
Sect. 7. R (R Core Team 2021) code to run the proposed algorithms and replicate the 
real examples is available as supplementary material.

2  Maximum likelihood estimation

Given, an i.i.d sample (y1, y2,… , yn) from Y ∼ m◦(y;�) , the maximum likelihood 
estimate (MLE) is obtained by maximizing the log-likelihood function

or solving the corresponding set of estimating equations 
∑n

i=1
u◦(yi;�) = 0 , where

(3)𝓁
◦(�) =

n∑

i=1

logm◦(yi;�)
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is the score function. For a wrapped unimodal elliptically symmetric model, i.e., 
given by wrapping (2) onto the p-torus, let

Then, the MLE is the solution to the following fixed point equations

The reader is pointed to Appendix A for details. Finding the MLE requires an itera-
tive procedure alternating between the computation of (4) based on current param-
eters values and finding the (updated) solution to (5). An approximate MLE can be 
obtained using crispy assignments after the computation of (4), that is we let

and solve the estimating equation

based on the unwrapped (fitted) linear data x̂i = yi + 2𝜋 ĵi.
In the special situation given by the WN, the derivation of the MLE through 

the fixed point equations in (5) coincides with that obtained from an expectation-
maximization (EM) algorithm based on a data augmentation procedure (Fisher 
and Lee 1994; Coles 1998; Jona  Lasinio et  al. 2012; Nodehi et  al. 2021). In a 
similar fashion, the approximate MLE can be obtained from a classification EM 
(CEM) algorithm (Nodehi et al. 2021). See Appendix B.

Remark 1 The infinite sum over ℤp makes likelihood inference challenging and 
hence, it is common to replace it by a sum over the Cartesian product CJ = J

p , 
where J = (−J,−J + 1,… , 0,… , J − 1, J) for some J providing a good approxima-
tion, since the summands of the series converge to zero. The approximation based 
on the truncated series works when 

u◦(y;�) = ∇� logm
◦(y;�) =

∇�m
◦(y;�)

m◦(y;�)

(4)vij = vij(�,Σ) =
h�(yi + 2�j;�,Σ)

∑
k∈ℤp h(yi + 2�k;�,Σ)

.

(5)

� =

∑n

i=1

∑
j∈ℤp vij(yi + 2𝜋j)

∑n

i=1

∑
k∈ℤp vik

Σ = −
2

n

n�

i=1

�

j∈ℤp

vij(yi + 2𝜋j − �)(yi + 2𝜋j − �)⊤ .

(6)ĵi = argmaxj∈ℤpvij

(7)
n∑

i=1

u(x̂i;�) = 0

Pr {(Y − �) ∈ (−2�J, 2�J]p} ≤
p∑

d=1

Pr
{
(Yk − �k) ∈ (−2�J, 2�J]

}
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is negligible; this is the case when 
(
𝜇d − 4Σ

1∕2

dd
,𝜇d + 4Σ

1∕2

dd

)
⊆ (−2𝜋J, 2𝜋J] , for 

d = 1, 2,… , p (see also Kurz et al. 2014). Actually, in case of the wrapped ellipti-
cally symmetric family, the density in (1) tends to that of a uniform distribution as 
concentration decreases (see also Mardia and Jupp 2000b, for the WN case).

As noticed in Nodehi et al. (2021), the MLE for location is equivariant under affine 
transformation of the data in the original (unwrapped) linear space. On the contrary, 
this is not the case for the scatter matrix estimates. Furthermore, it is worth to remark 
that solving (7) does not lead to consistent estimates for Σ , since the ĵi cannot be a 
consistent estimates of the unknown wrapping coefficients. Therefore, there is lack of 
consistency for x̂i , as well. The population estimating equation

is solved by the true values (�
0
,Σ0) , hence making the MLE estimator Fisher con-

sistent. In contrasts, the estimating equation (8) is not the population estimating 
equations corresponding to (7). Actually, we can always re-express our observations 
so that zi = yi − � ∈ (−�,�]p . It is not difficult to see that x̂i = zi . Then, the distri-
bution from which the x̂i s are sampled is not m(x;�

0
,Σ0) . However, the distribution 

is still elliptically symmetric around � and its support is any hyper-cube of length 2� 
and in particular we can take T(�) = ×

p

k=1
(�k − �,�k + �] . We call this distribution 

the unwrapped model and we denote it by 

Now, we can define Σu
0
 as the solution to the CEM population estimating equation

For illustrative purposes, let us consider the following univariate examples. In 
Fig. 4, we compare the unwrapped normal density mu(x; 0, �2

0
) with the original nor-

mal density m(x; 0, �2
0
) , for �0 = 3�∕8 ≈ 1.178 (left panel) and �0 = �∕2 ≈ 1.571 

(8)∫
� p

u◦(y;�,Σ)m◦(y;�
0
,Σ0) dy = 0

mu(x;�
0
,Σ0) = m◦(x;�

0
,Σ0)�(x ∈ T(�0)).

(9)∫
ℝp

u(x;�,Σ)mu(x;�
0
,Σ0) dx = 0.

Fig. 4  Unwrapped normal density mu(x; 0, �2

0
) compared with the original normal density m(x; 0, �2

0
) , 

�0 = 3�∕8 , (left panel), �0 = �∕2 (middle panel); �u
0
 versus �0 (right panel)
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(middle panel). We find that �u
0
≈ 1.163 and �u

0
≈ 1.460 , respectively. For small val-

ues of �0 the two densities are very similar apart from the truncation of the tails in 
the range (−�,�] . On the opposite, the difference becomes marked for large values 
of �0 the relation between �0 and �u

0
 is displayed in the right panel of Fig. 4. It fol-

lows that (7) can be safely used for � ≤ �∕2 . However, in most practical cases, dis-
tributions characterized by large concentrations are not of interest and the identifica-
tion of outliers become unfeasible, as already shown in Sect. 1.

3  Outlyingness of torus data

We distinguish at least two approaches in the definition of outliers. The probabilistic 
approach is based on the idea that outliers are values that are highly unlikely to occur 
under the assumed model (Markatou et al. 1998; Agostinelli 2007). Under this perspec-
tive, outlyingness can be measured according to the degree of agreement between the 
data and the assumed model, as provided by the Pearson residual (Lindsay 1994). In 
contrasts, according to the geometric approach, outliers are observations which deviate 
from the pattern set by the majority of the data (Huber and Ronchetti 2009; Rousseeuw 
et al. 2011) with respect to a geometric distance. However, it is not straightforward to 
define and measure geometric distances on the torus (Mardia and Frellsen 2012). This 
makes the probabilistic point of view very appealing in this framework.

A simple but effective way to introduce outliers on the torus is that of considering 
the classical gross error model (Huber and Ronchetti 2009) on the unwrapped linear 
space. Let 0 ≤ 𝜖 < 0.5 and g(x) be an arbitrary density function. Then, the true den-
sity on the Euclidean space is

whereas, on the torus, we have that

A measure of the agreement between the true and assumed model on the probabil-
istic ground is provided by the Pearson residual function (Lindsay 1994; Basu and 
Lindsay 1994; Markatou et  al. 1998). Let KH(y) be a smooth family of (circular) 
kernel functions with bandwidth matrix H. Let f̂ ◦(y) and m̂◦(y;�) be smoothed den-
sities, obtained by convolution between KH(y) and f ◦(y) and m◦(y;�) , respectively. 
In Saraceno et al. (2021) it has been suggested to measure the outlyingness of torus 
data based on (11) and using the Pearson residual function defined on y ∈ �

p as

(10)f (x) = (1 − �)m(x;�) + �g(x)

(11)

f ◦(y) =
∑

j∈ℤp

f (y + 2�j)

= (1 − �)
∑

j∈ℤp

m(y + 2�j;�) + �
∑

j∈ℤp

g(y + 2�j)

= (1 − �)m◦(y;�) + �g◦(y).

(12)𝛿◦(y;�) =
f̂ ◦(y)

m̂◦(y;�)
− 1
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with �◦(y;�) ∈ [−1,+∞) , see also (Agostinelli 2007). The same probabilistic defi-
nition of outliers can be applied on the unwrapped linear space rather than on the 
torus, in a dual fashion. Therefore, in a CEM-based framework, one can define out-
lyingness on the unwrapped rather than circular data, based on (10). Actually, for a 
given x ∈ ℝ

p , one can define the Pearson residual function

where f̂ (x) and m̂(x;�) are linear smoothed model densities. However, according 
to the results shown in Sect.  2, the use of a C-step does not lead to observe data 
directly from m(x;�) but from the wrapped-unwrapped mechanism mu(x;�) . Then, 
it would be correct to consider the Pearson residual function

instead, with �u(x;�) ∈ [−1,+∞).
Large Pearson residuals detect points in disagreement with the model. This 

points are supposed to be down-weighted in the estimation process using a proper 
weighting function. The evaluation of a proper set of weights requires measuring 
the outlyingness of each data point with respect to a given (robust) fit of the pos-
tulated model. Based on the weighted likelihood methodology (Markatou et  al. 
1998), the weights are obtained from the finite sample counterparts of the Pear-
son residuals shown in (12) or (14). In the former case, we have

where f̂ ◦
n
(y) is a circular kernel density estimate on the torus. As well, in the case of 

unwrapped data, we have that

where f̂n(x) is a kernel density estimate evaluated on the hyperplane over the fitted 
unwrapped (complete) data (x̂1,… , x̂n) . In practice, for concentrated circular distri-
butions, the Pearson residuals in (16) can be approximated by

Smoothing the model makes the Pearson residuals converge to zero with probability 
one under the assumed model and it is not required that the kernel bandwidth goes 
to zero as the sample size increases (Markatou et al. 1998). In general, the choice of 
the kernel is not crucial.

(13)𝛿(x;�) =
f̂ (x)

m̂(x;�)
− 1,

(14)𝛿u(x;�) =
f̂ u(x)

m̂u(x;�)
− 1

(15)𝛿◦
n
(y;�) =

f̂ ◦
n
(y)

m̂◦(y;�)
− 1,

(16)𝛿u
n
(x;�) =

f̂ u
n
(x)

m̂u(x;�)
− 1,

(17)𝛿n(x;�) =
f̂ u
n
(x)

m̂(x;�)
− 1.
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Remark 2 When the model is the multivariate WN distribution, we can use a multi-
variate WN kernel with covariance matrix H = diag(h2) , since the smoothed model 
density is still an element of the WN family with covariance matrix Σ + H.

Remark 3 In practice, under the WN model, the distribution of the unwrapped data 
can be approximated by a multivariate normal variate for concentrated distribu-
tions, that is whenever all the variances are sufficiently small. In this case, using a 
multivariate normal kernel with bandwidth matrix H = diag(h2) returns a smoothed 
model that is still normal with variance-covariance matrix Σ + H . It is worth to 
stress that the WN distribution inherits this property of closure with respect to con-
volution from the normal model. The closure to convolution property makes the use 
of the Gaussian kernel very appealing.

Remark 4 The family of elliptical distributions is not closed under convolution. e.g., 
see Sec 5.3.4 of (Prestele 2007). However, some subfamilies of elliptical distribu-
tions are closed under convolution; for example, the class of elliptical stable distri-
butions are closed under convolutions.

Despite several weight functions could be used, in the weighted likelihood meth-
odology it is common to consider

where w(�) ∈ [0, 1] , [⋅]+ denotes the positive part and A(�) is the residual adjustment 
function (RAF, Lindsay 1994; Basu and Lindsay 1994; Park et al. 2002), whose spe-
cial role is related to the connections between weighted likelihood estimation and 
minimum disparity estimation. In practice, the RAF acts by bounding the effect of 
those points leading to large Pearson residuals. The function A(⋅) is assumed to be 
increasing and twice differentiable in [−1,+∞) , with A(0) = 0 and A�(0) = 1 . The 
weights decline smoothly to zero as � → ∞ (outliers) and depending on the RAF 
also as � → −1 (inliers). In particular, the weight function (18) can involve a RAF 
based on the Symmetric Chi-squared divergence (Markatou et al. 1998), the family 
of Power divergences (Lindsay 1994) or the Generalized Kullback–Leibler diver-
gence (Park and Basu 2003) (see Saraceno et al. 2021, for details).

3.1  The geometric approach

The probabilistic approach allows to identify outliers either on the torus or after 
unwrapping the data, in a purely dual fashion. On the other hand, the geometric 
approach can be used only in the latter situation, as described in Greco et al. (2021). 
By exploiting the methodology developed in Agostinelli and Greco (2019), under 
the elliptically symmetric model in (3) and for a known wrapping coefficient vector 
j , Pearson residuals and weights can be based on the squared Mahalanobis distance 
d2 = d2(x;�) = [(x − �)⊤Σ−1(x − �)] . In particular, finite sample Pearson residuals 
are defined as

(18)w(�) = min

{
1,

[A(�) + 1]+

� + 1

}
,
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where f̂n(d2) is a (unbounded at the boundary) kernel density estimate evaluated 
over squared Mahalanobis distances d2(x̂; �̂) and �2

u
(d2; p) is the density of the 

Mahalanobis distance evaluated under the wrapped-unwrapped model mu(⋅;�) . For 
concentrated circular distributions, the Pearson residual in (19) can be approximated 
by

where �2(⋅; p) denotes the (asymptotic) distribution of Mahalanobis distances for 
the original linear data. Figure 5 shows two examples of �2

u
(d2; p) for p = 6 when 

�0 = 3�∕8 (left panel) and �0 = �∕2 (right panel). In the first case the support of the 
distribution is the interval [0, 42.6̄) while in the second case is the interval [0, 24).

4  Robust fitting based on WLEE

Robust fitting of a multivariate wrapped unimodal elliptically symmetric model to 
torus data can be achieved according to a weighted version of the population estimating 
equations (8), i.e.,

(19)𝛿du
n
(x;�) =

f̂ u
n
(d2)

𝜒2
u
(d2; p)

− 1,

(20)𝛿d
n
(x;�) =

f̂n(d
2)

𝜒2(d2; p)
− 1,

(21)∫
� p

w◦(y)u◦(y;�,Σ)m◦(y;�
0
,Σ0) dy = 0,

Fig. 5  Distribution of the squared Mahalanobis distance for the unwrapped observations from a wrapped 
normal model with �0 = 3�∕8 , (left panel) and �0 = �∕2 (right panel)
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where the weight function is given by w◦(y) = w(�◦(y;�)) . We notice that w◦(y) is a 
periodic function, i.e., w◦(y) = w◦(y + 2�j) , j ∈ ℤ

p . The sample version of (21), that 
is 

specializes to the following WLEE for unimodal elliptically symmetric distributions

with w(�◦
n
(yi)) = w(�◦

n
(yi;�,Σ)) . The WLEE can be solved by a suitable modifica-

tion of the iterative procedure shown in Sect. 2 to find the MLE. At iteration (s), 
based on current v(s)

ij
 obtained as in (4), a set of data dependent weights 

w
(s)

i
= w

(
�◦
n
(yi;�

(s),Σ(s))
)
 is computed, whose effect is that of down-weighting the 

contribution of those points with large Pearson residuals based on the current fit. 
Then, updated estimates from iteration (s) to (s + 1) can be obtained by solving the 
WLEE in (22). In practice, the summation over ℤp is replaced by a summation over 
CJ.

According to a similar reasoning, we can consider a weighted counterpart of 
the population estimating equation (9), that is

We notice that, in this situation, the use of (12) or (13) leads to the same estimator. 
Hence, one can build a WLEE based on the fitted unwrapped linear data x̂i , with

weights whose evaluation can be now based on (15), (16) or (19). At iteration 
(s), estimates are updated according to

where ḣ(s)
i

= h�(d(x̂
(s)

i
; �̂(s), Σ̂(s)))∕h(d(x̂

(s)

i
; �̂(s), Σ̂(s))).

We stress that the derivation of the WLEE for torus data generalizes the 
approach introduced in Saraceno et  al. (2021), that was confined to a data aug-
mentation perspective rather than on genuine maximum likelihood estimation. 
Therefore, here it is possible to derive a WLE that is the weighted counterpart of 

n∑

i=1

w(�◦
n
(yi;�))u

◦(yi;�) = 0

(22)

� =

∑n

i=1
w(𝛿◦

n
(yi))

∑
j∈ℤp vij(yi + 2𝜋j)

∑n

i=1
w(𝛿◦

n
(yi))

∑
k∈ℤp vik

Σ = −
2∑n

i=1
w(𝛿◦

n
(yi))

n�

i=1

w(𝛿◦
n
(yi))

�

j∈ℤp

vij(yi + 2𝜋j − �)(yi + 2𝜋j − �)⊤.

(23)∫
ℝp

w(x)u(x;�,Σ)mu(x;�
0
,Σ0) dx = 0.

(24)

�̂(s+1) =

∑n

i=1
w
(s)

i
ḣ
(s)

i
x̂
(s)

i
∑n

i=1
w
(s)

i
ḣ
(s)

i

Σ̂(s+1) = −
2

∑n

i=1
w
(s)

i

n�

i=1

w
(s)

i
ḣ
(s)

i

�
x̂
(s)

i
− �̂(s+1)

��
x̂
(s)

i
− �̂(s+1)

�⊤

,
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the MLE (and of its approximated version) and we are not limited to a CEM-type 
algorithm.

Remark 5 For a fixed bandwidth matrix H, the newly established weighting approach 
based on (16) requires that a multivariate kernel density estimate is computed at 
each iteration. The same is also true when using the weights in (19). In contrasts, the 
procedure based on (15) requires the evaluation of a more demanding torus kernel 
density estimate only once. However, computing a new kernel density estimate for 
linear data at each iteration adds no computational burden.

4.1  Bandwidth selection

The finite sample robustness of the WLE depends on the selection of the smoothing 
parameter h, whatever the type of Pearson residuals among those listed above. Large 
values of h lead to smooth kernel density estimates that are stochastically close to 
the postulated model. As a result, Pearson residuals are all close to zero, weights all 
close to one, and the WLE gains efficiency at the model but is less robust. On the 
opposite, small values of h make the kernel estimate more sensitive to the occur-
rence of outliers. Then, Pearson residuals become large where the data are in disa-
greement with the model and such points are properly down-weighted: the WLE 
loses efficiency at the model but recover robustness to outliers contamination.

The selection of h is still an open issue in weighted likelihood estimation. From 
a practical point of view, selecting a too small value for h can lead to an undue 
excess of down-weighting and hide relevant features in the data. In contrasts, a too 
large value could provide an insufficient down-weighting and misleading estimates, 
as well as the MLE. One strategy relies on a monitoring approach (Agostinelli and 
Greco 2018; Greco and Agostinelli 2020; Greco et al. 2020) in the selection of the 
bandwidth. It is suggested to run the procedure for different values of the smoothing 
parameter h and monitor the behavior of estimates and/or weights as h varies in a 
reasonable range. Monitoring the weights as h varies is expected to describe a tran-
sition from a robust to a nonrobust fit, since for increasing values of h all the weights 
approach one and the methodology does not allow to discriminate between the genu-
ine part of the data and the outliers, anymore. As well, one can monitor a summary 
of the weights, such as the empirical down-weighting level 1 − w̄ , where w̄ denotes 
the average of the weights. It can be considered as a rough estimate of the amount 
of down-weighting. The approach of monitoring unveils patterns and substructures 
otherwise hidden that can aid the comprehension of the phenomenon under study 
and the sources of contamination.

4.2  Initialization

The iterative algorithm to solve the WLEE in (22) or (24) can be initialized using 
subsampling. The subsample size is expected to be as small as possible in order to 
increase the probability to get an outliers free initial subset but large enough to guar-
antee estimation of the unknown parameters. The initial value for the mean vector 
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� is set equal to the circular sample mean. Initial diagonal elements of Σ can be 
obtained as Σ(0)

rr
= −2 log(�̂�r) , where �̂�r is the sample mean resultant length, whereas 

its off-diagonal elements are given by Σ(0)
rs

= �c(yr, ys)�
(0)
rr
�(0)
ss

 ( r ≠ s ), where �c(yr, ys) 
is the circular correlation coefficient, r, 2 = 1, 2,… , p (Jammalamadaka and Sen-
Gupta 2001). It is suggested to run the algorithm from several starting points. The 
best solution can be selected by minimizing the probability to observe a small Pear-
son residual (Agostinelli and Greco 2019; Saraceno et al. 2021). According to the 
experience of the authors, a small number of subsamples is sufficient and very often 
they led to the same solution.

4.3  Outliers detection

The objective of a robust analysis is twofold: from the one hand we protect model 
fitting from the adverse effect of anomalous values, from the other hand it is of inter-
est to provide effective tools to identify outliers based on formal rules and the robust 
fit. The process of outliers detection allows to investigate deeply their source and 
nature and unveil hidden and unexpected substructures in the data that are worth 
studying and may not have been considered otherwise (Farcomeni and Greco 2016). 
The inspection of weights provides a first approach for the task of outliers detec-
tion: points whose weight is below a fixed, and opportunely low, threshold (see also 
Greco and Agostinelli 2020 in a different framework) could be declared as outlying. 
However, it would be desirable to base outliers detection on an appropriate statistic 
to test outlyingness of each data point. In this respect, at least when robust fitting 
relies on (24), it is suggested to build a decision rule based on the fitted unwrapped 
linear data at convergence, treating them as a proper sample from a multivariate lin-
ear variate with density function as in (2). This approximation is supposed to work 
as long as torus data show a sufficiently high concentrated distribution. Therefore, 
one can pursue outliers detection looking at the squared robust distances d2(x̂i;�̂�) . 
Outlying data are those whose distance exceeds a fixed threshold corresponding 
to the (1 − �)-level quantile of a chi-square distribution with p degrees of freedom 
(Greco et al. 2021).

5  Properties

Here, the asymptotic behavior of the proposed estimators and their robustness prop-
erties are investigated. The reader is pointed to Agostinelli and Greco (2019) for 
details on the asymptotic behavior of the WLE in a general setting. Hereafter, we 
assume broad regularity conditions for consistency and asymptotic normality of the 
MLE to hold.
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5.1  Asymptotic distribution under the model

The following Lemma give the conditions to ensure the required asymptotic behav-
ior of the Pearson residuals in (15), (16) and (19) and the corresponding weights at 
the assumed model. Henceforth, f̂ (y) = m̂(y,�0) (a.s.) and

where m̂(y;�) = ∫ k(y − t)m∗(t;�) dt     is the smoothed model is involved in the 
definition of Pearson residuals in use, i.e., m∗(y) can be m◦(y) , mu(x) or �2

u
(d2) , 

respectively. Moreover, let �n be the Pearson residuals defined as either in (15), (16) 
or (19), and f̂n be a kernel density estimator with kernel KH(⋅) and bandwidth matrix 
H, corresponding to f̂ ◦

n
 , f̂ u

n
 or f̂ du

n
 , respectively, according to the definition of �n in 

use.

Lemma 1 Assume that: (i) the kernel KH(⋅) is of bounded variation; (ii) the model 
is correctly specified, that is, there exists �0 ∈ Θ such that f ◦(y) = m◦(y;�0) (a.s.); 
(iii) the model density is positive over the support Y , that is, there exists K > 0 such 
that supy∈Y,�∈Θ m◦(y;�) ≥ K ; (iv) A(0) = 0 , A�(0) = 1 and A��(�) is a bounded and 
continuous function w.r.t. � . Then,

Proof Under assumptions (i) and (ii) we have that f̂n(y)
a.s.
−−→m̂(y;�0) uniformly w.r.t. 

y as a result of the Glivenko–Cantelli theorem (Rao 2014). Under (iii) we obtain

the second and third statements follows from equation (18), assumption (iv) and the 
continuous mapping theorem.   ◻

Remark 6 Assumption (iii) in Lemma 1 is plausible in the case of toroidal densities. 
It allows to relax the mathematical device of evaluating the supremum of the Pear-
son residuals, since it avoids the occurrence of small (almost null) densities in the 
tails that would affect the denominator of Pearson residuals (Agostinelli and Greco 

𝛿(y;�) =
m̂(y,�0)

m̂(y,�)
− 1,

sup
y∈Y,�∈Θ

|�n(y;�) − �(y;�)|
a.s.
−−→0

sup
y∈Y,�∈Θ

|w(�n(y;�)) − w(�(y;�))|
a.s.
−−→0

sup
y∈Y,�∈Θ

|w�(�n(y;�)) − w�(�(y;�))|
a.s.
−−→0 .

sup
y∈Y,�∈Θ

||𝛿n(y;�) − 𝛿(y;�)|| = sup
y∈Y,�∈Θ

|||||

f̂ (y) − m̂(y;�0)

m̂(y;�)

|||||

≤ supy∈Y,�∈Θ
|||f̂ (y) − m̂(y;�0)

|||
K

a.s.
−−→0 .
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2019). It is satisfied for wrapped models obtained from (2) under e.g., the assump-
tion that h(⋅) is strictly positive in the hyper-cube ×p

i=1
(�i − �,�i + �] and Σ is posi-

tive definite.

Lemma 2 Assume that for all y and � , Ψ(y;�) = w(�(y;�))u(y;�) is differenti-
able and the matrix Ψ̇(y;�) with elements i,  j be �Ψi∕��j is positive definite and 
��0

(Ψ̇(Y;�)) is finite, then 

 i. for every n, if there exists a solution �̌n of 
∑n

i=1
Ψ(Yi;�) = 0 this solution is 

unique;
 ii. let �̌n be the sequence of solutions, then �̌n

a.s.
−−→�0 as n → ∞.

Proof Part i. is an application of Theorem 10.9 in Maronna et al. (2019). For part 
ii. notice that Ψ(y;�0) = u(y;�0) and by a first order Taylor expansion around �0 of 
Ψ(y;�) we have

, hence

On the right hand side, the first term is bounded almost surely, while the second 
term goes to zero almost surely by the strong law of large numbers for i.i.d. random 
variables. Hence, �̌n

a.s.
−−→�0 as n → ∞ .   ◻

Theorem  1 (Consistency) Under the assumptions of Lemmas  1 and 2. Assume 
Ψn(y;�) = w(�n(y;�))u(y;�) is differentiable and the matrix Ψ̇n(y;�) with elements 
i, j be �Ψn,i∕��j is positive definite, then 

 i. for every n, if there exists a solution �̂n of 
∑n

i=1
Ψn(Yi;�) = 0 this solution is 

unique;
 ii. let �̂n be the sequence of solutions, then �̂n

a.s.
−−→�0 as n → ∞.

Proof For each n consider a first order Taylor expansion around �̌n of Ψn(Yi;�) and 
hence,

0 =

n∑

i=1

Ψ(Yi; �̌n) =

n∑

i=1

u(Yi;�0) +

n∑

i=1

Ψ̇(Yi;�i)(�̌n − �0)

�̌n − �0 =

[
1

n

n∑

i=1

Ψ̇(Yi;�i)

]−1

1

n

n∑

i=1

u(Yi;�0)

n∑

i=1

(
Ψn(Yi; �̂n) − Ψn(Yi; �̌n)

)
=

n∑

i=1

Ψ̇n(Yi;�n,i)(�̂n − �̌n)
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and, since

we have

the first term is bounded almost surely, while for the second term, we notice that

the first term goes to zero almost surely by Lemma 1, while the second term is 
bounded almost surely by assumption on the second moment of the score function. 
Hence, �̂n − �̌n

a.s.
−−→0 on the other hand, by Lemma 2 we have �̌n − �0

a.s.
−−→0 and this 

concludes the proof.   ◻

Remark 7 We stress again that the WLE is consistent for �0 = (�0,Σ
u
0
) in the case 

of (23), but the differences between the solutions to the population estimating equa-
tions (21) and (23) are negligible for concentrated circular distributions, as well as 
for (8) and (9).

Theorem 2 (Asymptotic distribution) Under the assumptions of Theorem 1. Assume, 
for each n, Ψn be twice differentiable with respect to � with bounded derivatives; let 
Ψ̇n,jk = 𝜕Ψn,j∕𝜕𝜃k assume, for all y , � |Ψ̇n,jk| ≤ K(y) with �(K(Y)) < ∞ . Then

where A = ��0
(Ψ(y;�0)Ψ(y;�0)

⊤).

Proof The proof is similar to Theorem  10.11 of Maronna et  al. (2019). Let 
�(�) = ��0

Ψ(Y;�) and B the matrix of derivatives with elements ��j∕��k|�=�0 . 

0 =

n∑

i=1

Ψn(Yi; �̂n) =

n∑

i=1

(
Ψn(Yi; �̂n) − Ψn(Yi; �̌n)

)
+

n∑

i=1

(
Ψn(Yi; �̌n) − Ψ(Yi; �̌n)

)

=

n∑

i=1

Ψ̇n(Yi;�n,i)(�̂n − �̌n) +

n∑

i=1

(
Ψn(Yi; �̌n) − Ψ(Yi; �̌n)

)
,

�̂n − �̌n = −

[
1

n

n∑

i=1

Ψ̇n(Yi;�n,i)

]−1

1

n

n∑

i=1

(
Ψn(Yi; �̌n) − Ψ(Yi; �̌n)

)
.

‖‖‖‖‖
1

n

n∑

i=1

(
Ψn(Yi; �̌n) − Ψ(Yi; �̌n)

)‖‖‖‖‖
=
‖‖‖‖‖
1

n

n∑

i=1

(
w(𝛿n(Yi; �̌n)) − w(𝛿(Yi; �̌n))

)
u(Yi; �̌n)

‖‖‖‖‖
≤ sup

y∈Y,�∈Θ

|||w(𝛿n(Yi; �̌n)) − w(𝛿(Yi; �̌n))
|||

×
1

n

n∑

i=1

‖‖‖u(Yi; �̌n)
‖‖‖

√
n(�̂n − �0)

d
−→N(0,A−1),
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For each n and j call Ψ̈n,j be the matrix with elements �Ψn,j∕��k��h . Let 
An =

1

n

∑n

i=1
Ψn(Yi;�0) , Bn =

1

n

∑n

i=1
Ψ̇n(Yi;�0) and Cn is the matrix with its jth 

row equals to (�̂n − �0)
⊤ 1

2n

∑n

i=1
Ψ̈n,j(Yi;�i) . We notice that 1

n

∑n

i=1
Ψ̈n,j(Yi;�i) is 

bounded and since �̂n − �0

a.s.
−−→0 by Theorem 1, this implies that Cn

a.s.
−−→0 . From a 

second order Taylor expansion around �0 of Ψn(y;�) it is easy to see that

From the proof of Theorem 1, we have An −
1

n

∑n

i=1
u(Yi;�0)

a.s.
−−→0 . In a similar way, 

using Lemma  1 we have Bn − B
a.s.
−−→0 . Since u(Yi;�0) are i.i.d and finite second 

moments, by multivariate central limit theorem we have 1√
n

∑n

i=1
u(Yi;�0)

d
−→N(0,A) 

and hence,  
√
nAn has the same limit. We notice that B coincides with the second 

derivatives of the log-likelihood and we had assume it positive definite. So, by the 
multivariate Slutsky’s lemma, see, e.g., Maronna et al. (2019, Theorem 10.10) we 
have 

 on the other hand, under Bartlett’s assumption we have A = B and the result holds.  
 ◻

In the next corollary we provide a set of assumptions so that the previous results 
can be applied to wrapped unimodal elliptical symmetric models.

Corollary 1 Consider a wrapped unimodal elliptically symmetric model as in (2). 
Let �0 = (�0 , Σ0 ) be the true values with Σ0 be a nonsingular covariance matrix, 
i.e., the sample y1,… , yn is i.i.d. from m(⋅;�0) . Let h(⋅) be a strictly decreasing, non-
negative function with uniformly bounded third derivatives and h(⋅) is positive in the 
region T(�0) . Assumptions in Lemma 1 hold. Then, 

 i. the sequence �̂�n solutions of (22) is strongly consistent for �0 and 

 where I = ��0
(∇��⊤m

◦(Y;�))|�=�0 is the expected Fisher information matrix.
 ii. the sequence 𝜃n solutions of (24) is strongly consistent for �u

0
= (�0,Σ

u
0
) and 

 where Iu = ��0
(∇��⊤m

u(Z;�))|�=�u
0
 is the expected Fisher information matrix 

based on mu(⋅;�0).

√
n(�̂n − �0) = −(Bn + Cn)

−1
√
nAn.

√
n(�̂n − �0)

d
−→N(0,B−1AB−1⊤)

√
n(�̂n − �0)

d
−→N(0, I(�0)

−1),

√
n(�̃n − �u

0
)
d
−→N(0, Iu(�u

0
)−1),
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5.2  Influence function

The influence function (IF) plays a very important role in the evaluation of local 
robust properties of estimators in a classic robust framework (Huber and Ronchetti 
2009). For a class of minimum distance estimators and weighted likelihood estima-
tors (Beran 1977; Lindsay 1994), under broad regularity conditions and the assumed 
model, the IF coincides with that of the MLE. This feature suggests their high effi-
ciency from one side, but a lack of local robustness on the other. The IF was used to 
investigate the robustness of some estimators for the circular mean direction in Him 
and Simpson (1992), but its use was unsatisfactory. Here, we discuss the IF of the 
proposed WLE in a more general setting.

Given a distribution function F, let T ∶ F ↦ T(F) ∈ Θ be a statistical functional 
that admits a von Mises expansion (Serfling 2009). Given, the gross error neighbor-
hood F�(x) = (1 − �)F(x) + �1z(x) we define the influence function of T at z as

Let M� = M(x;�) be the assumed model and u(x;�) the corresponding score func-
tion. Let TF = T(F) be the statistical functional solution of the weighted likelihood 
estimating equations

where we have T(M�) = � . The derivation of the IF for such functional is similar to 
the case of M-estimators (Huber and Ronchetti 2009). We have that

and

where m̂(x;�) is the smoothed model and û(x;�) = 𝜕

𝜕�
log m̂(x;�) . Then, we obtain

where

IF(z;T,F) = lim
�↓0

T(F�) − T(F)

�
=

�

��
T(F�)

||�=0.

∫ w(x;T(F),F)u(x;T(F)) dF(x) = 0,

�

��
w(�) =

(
�

��
A(�) − w(�)

)
(� + 1)−1

𝜕

𝜕𝜖
𝛿(x;T(F𝜖),F𝜖)|𝜖=0 = −

k(x; z,H)

m̂(x;T(F))
+ (𝛿(x;T(F),F) + 1)(1 − û(x;T(F))IF(z;T,F)),

IF(z;T,F) = D(F)−1N(z,F),
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and

where u�(x;�) = 𝜕2

𝜕�𝜕�⊤
logm(x;�) . Under the model, we obtain the classical IF, that 

for the WLE corresponds to that of the MLE, i.e.

N(z,F) = w(z;T(F),F)u(z;T(F))

+ ∫ w�(𝛿(x;T(F),F))
k(x; z,H)

m̂(x;T(F))
u(x;T(F)) dF(x)

− ∫ w�(𝛿(x;T(F),F))(𝛿(x;T(F),F) + 1)u(x;T(F)) dF(x)

= w(z;T(F),F)u(z;T(F))

+ ∫ (A�(𝛿(x;T(F),F)) − w(𝛿(x;T(F),F)))

×

(
k(x; z,H)

f̂ (x)
− 1

)
u(x;T(F)) dF(x)

D(F) = ∫ w�(𝛿(x;T(F),F))(𝛿(x;T(F),F) + 1)û(x;T(F))u(x;T(F))⊤ dF(x)

− ∫ w(x;T(F),F)u�(x;T(F)) dF(x)

= ∫ (A�(𝛿(x;T(F),F)) − w(𝛿(x;T(F),F)))û(x;T(F))u(x;T(F))⊤ dF(x)

− ∫ w(𝛿(x;T(F),F))u�(x;T(F)) dF(x),

IF(z;T,M�0
) = I(�0)

−1 u(z;�0),

Fig. 6  WEM. Influence function for the location functional �(F) with 
f ◦(y) = (1 − �)m◦(y; 0, �2

0
) + �m◦(y;�∕2, (�∕16)2) , for � = 0, 0.05, 0.10, 0.20 and �0 = �∕8 (left panel) 

and �0 = �∕4 (right panel)
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where I(�) = −��(u
�(x;�)) is the expected Fisher information matrix. How-

ever, the behavior of the IF under a distribution other than the postulated 
model is very different. As an example let us consider a simple setting in which 
m◦(y;�, �2) is the univariate WN and we are interested in evaluating the IF 
for the location functional when the data are from a two components mixture 
f ◦(y) = (1 − �)m◦(y; 0, �2

0
) + �m◦(y;�∕2, (�∕16)2) . In Fig. 6, we show the IF of the 

location functional �(F◦) defined as the solution to the estimating equation (21) for 
�0 = �∕8 (left panel) and �0 = �∕4 (right panel). In this setting, the IF is a periodic 
function and in a region of high probability for the contaminating distribution the 
influence of a point is almost null. On the opposite, the behavior of the IF outside 
that region is similar to that of the maximum likelihood functional. We also notice 

Fig. 7  WCEM using Pearson residuals as in (15) or (16). Influence function for the location functional 
�(F) with f ◦(y) = (1 − �)m◦(y; 0, �2

0
) + �m◦(y;�∕2, (�∕16)2) , for � = 0, 0.05, 0.10, 0.20 and �0 = �∕8 

(left panel) and �0 = �∕4 (right panel)

Fig. 8  WCEM using Pearson residuals as in (19). Influence function for the location functional �(F) with 
f ◦(y) = (1 − �)m◦(y; 0, �2

0
) + �m◦(y;�∕2, (�∕16)2) , for � = 0, 0.05, 0.10, 0.20 and �0 = �∕8 (left panel) 

and �0 = �∕4 (right panel)
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the change in sign at the antimode ( ±� ). When we consider the location functional 
�(F) associated to the WLE defined by (23) with Pearson residuals as in (12) or 
(13), the IF is not periodic and it is zero outside the interval (� − �,� + �) . Inside 
the interval, the behavior of the IF is similar to that of �(F◦) , as it is shown in Fig. 7. 
in contrasts, the IF of �(F) with Pearson residuals built according to the geometric 
approach is symmetric, since only the magnitude of the outliers plays a role in the 
Mahalanobis distance, as shown in Fig. 8.

6  Numerical studies

In this section, we investigate the finite sample behavior of the proposed WLEs 
given by the WLEE in (22) and (24), for the different weighting schemes consid-
ered. The numerical studies are limited to the WN case. Since solving the WLEE in 
this case is equivalent to consider a weighted counterpart of the EM or CEM algo-
rithms, in order to make it easier to read the results, we denote the WLE solution to 
(22) as WEM and the approximate WLE solution to (24) as WCEM-torus, WCEM-
unwrap and WCEM-dist, depending on whether weights are based on residuals in 
(15), (17) or (20), respectively. The MLE and its approximated version have been 
also taken into account and are denoted by EM and CEM, respectively. We consider 
numerical studies based on N = 500 Monte Carlo trials. Data are sampled from a p−
variate WN with null mean vector and variance-covariance matrix Σ = D1∕2RD1∕2 , 
where R is a random correlation matrix with condition number set equal to 20 and 
D = �Ip . Contamination has been added by replacing a proportion � of randomly 
selected data points. Those observations are shifted by an amount k� in the direc-
tion of the smallest eigenvector of Σ and perturbed by adding some noise from a p−
variate wrapped normal with independent components and marginal scale �� . We 
considered a sample size n = 250 , number of dimensions p = 2, 5 , � = �∕8,�∕4 , 
� = 0, 0.10, 0.20 , k� = �∕2,� , �� = 0.05 , J = 2 . The case � = 0 concerns the situ-
ation without contamination and allows to investigate the behavior of the proposed 
robust methods at the true model. When p = 5 , contamination only affects the first 
two dimensions. The bandwidths have been chosen so that all the WLEs return an 
empirical downweighting level close to the nominal contamination size to make a 
fair comparison. The weights are based on a GKL RAF. Initialization is based on 
subsampling with twenty subsamples of size p + p(p + 1)∕2 + 5 . This choice did not 
represent an issue. Moreover, very often the different starting values led to the same 
solution. All the algorithms are assumed to reach convergence when

where g(�) =
√
2(1 − cos(�)) . Fitting accuracy is evaluated according to 

 (i) the square root average angle separation 

max
�
g(�̂(s+1) − �̂(s)), ‖Σ̂(s+1) − Σ̂(s)‖

�
< 10−6,
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 (ii) the divergence: 

The effectiveness of the outliers detection rules shown in Sect. 4 is assessed in terms 
of swamping and power, that is evaluating the rate of genuine observation wrongly 
declared outliers and that of outliers correctly detected, respectively, for an overall 
significance level � = 1% . Both univariate and multivariate kernel density estima-
tion involved in the computation of Pearson residuals in (17) and (20), respectively, 
has been performed using the functions available from package pdfCluster 
(Azzalini and Menardi 2014). The numerical studies are based on nonoptimized R 

√
AS(�̂) =

����1

p

p�

j=1

(1 − cos(�̂j)),

Δ(Σ̂) = trace(Σ̂Σ−1) − log(det(Σ̂Σ−1)) − p.

Fig. 9  Box-plots for 
√
AS(�̂) (left) and Δ(Σ̂) (right) for p = 2 (top) and p = 5 (bottom), � = �∕8,�∕4 

when � = 0
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code and have been run on a 3.4 GHz Intel Core i5 quad-core. Codes are available as 
supplementary material.

Figure 9 displays the results under the true model, for p = 2, 5 : the robust meth-
ods all provide accurate results in this scenario and the observed differences with 
respect to the MLE are tolerable. Figures 10 and 11 give the empirical distributions 
of the four WLEs in the presence of contamination when p = 2 and � = �∕8 or 
� = �∕4 , respectively. As well, Figs. 12 and 13 concern the case with p = 5 . The 
MLE becomes unreliable and it is not shown. In contrasts, the robust techniques 
always provide resistant estimates, as expected. We do not observe relevant differ-
ences among the robust proposals in terms of fitting accuracy. For what concerns the 
task of outliers detection, all the suggested WLEs return an average rate of swamp-
ing close to the nominal level and a power almost always equal to one, for all con-
sidered scenario and they do not exhibit different performances.
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Fig. 10  Box-plots for 
√
AS(�̂) (left) and Δ(Σ̂) (right) for p = 2 , � = �∕8 , k� = �∕2,� when � = 10% 

(top) and � = 20% (bottom)
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Computational time was always in a feasible range. However, based on the current 
codes, there is a remarkable time saving from the use of WCEM-unwrap or WCEM-
dist with respect to WCEM-torus and WEM. One main reason could be the use of the 
functions from pdfCluster in the former two methods. For instance, when p = 2 , 
� = �∕4 , � = 20% the median elapsed time was about 12  s for the WEM and the 
WCEM-torus, but only 1.3 s for the WCEM-unwrap and slightly larger (still less than 
two) for the WCEM-dist. The advantage of using the WCEM combined with Pearson 
residuals in (17) was overwhelming for p = 5 : with � = �∕4 and � = 20% the WEM 
and WCEM-torus took a median time of about 75 and 80 s, respectively for k� = �∕2 , 
whereas the WCEM-unwrap took about 9 s and the WCEM-dist about 35 s. The case 
with k� = � was less computationally demanding but still the differences were noticea-
ble: about 55 s for the WEM and WCEM-torus, about 27 s for the WCEM-dist and only 
about 4 s for the WCEM-unwrap. The ability to evaluate weights on the unwrapped 
data rather than on the torus reduced the computational time, indeed.

Fig. 11  Box-plots for 
√
AS(�̂) (left) and Δ(Σ̂) (right) for p = 2 , � = �∕4 , k� = �∕2,� when � = 10% 

(top) and � = 20% (bottom)
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7  Real data examples

7.1  8TIM protein data

Let us consider the 8TIM protein data shown in Sect. 1. We compare the results from 
maximum likelihood estimation and its robust counterparts based on weighted likeli-
hood estimation under the WN model assumption. We use the same notation shown 
in Sect. 6 to denote the different estimates. The data and the fitted models given by 
the EM and WCEM-unwrap based on (16) are shown in Fig. 14: the Ramachandran 
plot of the angles over [0, 2�) × [0, 2�) is given in the left panel, whereas data are 
displayed on a flat torus in the right panel, to account for their cyclic topology. The 
results from the WEM or WCEM-torus are indistinguishable. In both panels, the fit-
ted models are represented through tolerance ellipses based on the 0.99−level quan-
tile of the �2

2
 distribution. The data clearly show a multi-modal clustered pattern. 

0.00

0.01

0.02

0.03

0.04

0.05

WCEM−dist WCEM−torus WCEM−unwrap WEM

A
S
(µ̂
) Shift

kε = π

kε = π 2

0.0

0.1

0.2

0.3

WCEM−dist WCEM−torus WCEM−unwrap WEM

∆(
Σ̂)

Shift
kε = π

kε = π 2

0.00

0.01

0.02

0.03

0.04

0.05

WCEM−dist WCEM−torus WCEM−unwrap WEM

A
S
(µ̂
) Shift

kε = π

kε = π 2

0.0

0.1

0.2

0.3

WCEM−dist WCEM−torus WCEM−unwrap WEM

∆(
Σ̂)

Shift
kε = π

kε = π 2

Fig. 12  Box-plots for 
√
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Fig. 14  8TIM protein data. Left panel: Ramachandran plot. Right panel: unwrapped data on a flat torus. 
99% Tolerance ellipses over imposed: robust fit (dashed line), maximum likelihood estimation (dotted 
line)
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Actually, the robust analyses give strong indication of the presence of several clus-
ters: they all disclose the presence of different structures, otherwise undetectable 
by maximum likelihood estimation. The tolerance ellipses corresponding to the 
robustly fitted WN distribution enclose those points in the most dense area, whereas 
the others are severely down-weighted. There is strong agreement with the findings 
from the analysis in Chakraborty and Wong (2021). In the left panel of Fig. 15 we 
displayed the weights from the WCEM-unwrap algorithm. According to an outliers 
detection testing rule performed at a significance level � = 0.01 , the actual rate of 
contamination is about 46% . The right panel of Fig.  15 shows the corresponding 
distance plot based on robust distances. The horizontal line gives the (square root) 
�2
0.99,2

 cut-off. Figure 16 shows genuine points and outliers on the torus.
The clustered structure of the data suggested by the outcome of the robust 

analyses can be further explored using a monitoring plot of the weights as the 
bandwidth h varies on a chosen grid of values. In this example, the bandwidth 
matrix is H = diag(h2) . The vertical line gives the bandwidth actually used. The 
dark trajectories in Fig.  17 correspond to those points receiving a large weight 

Fig. 15  8TIM protein data. Left panel: weights. Right panel: robust distances. The horizontal line gives 
the square root of the 0.99-level quantile of the �2

2
 distribution

Fig. 16  8TIM protein data. Bivariate angles as points on the surface of a torus from two different per-
spectives: genuine observations correspond to (red) larger dots, the remaining are outliers (color figure 
online)
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Fig. 17  8TIM protein data. Monitoring plot of weights from the robust fit. The vertical line gives the 
selected bandwidth value

Fig. 18  8TIM protein data. Model based clustering
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in the robust analysis, whereas the gray lines refer to the other points. For small 
values of the bandwidth h, at least two groups can be detected. As h increases, we 
notice a transition from the robust to a nonrobust fit since, many other observa-
tions are attached large weights and the size of global down-weighting reduces. 
In particular, some data points exhibit very steep trajectories, as they are no more 
down-weighted from some point ahead. This behavior suggest the presence of a 
second group of observations. A closer look at Fig. 17 also unveils a third group, 
which is composed by those points whose weight is still low for large values of 
the bandwidth on the right end part of the plot. These points highlight features 
that are not assimilable to the previous groups. Hence, the robust analysis indi-
cates at least three groups. This finding is confirmed by the results stemming from 
a proper model based clustering of the torus data at hand (Greco et  al. 2022), 
whose cluster assignments are shown in Figs. 18 and 19.

7.2  RNA data

RNA is assembled as a chain of nucleotides that constitutes a single strand folded 
onto itself. A nucleotide contains the five-carbon sugar deoxyribose, a nucle-
obase, that is a nitrogenous base, and one phosphate group. Then, each nucleo-
tide in RNA molecules presents seven torsion angles: six dihedral angles and one 
angle for the base. Data have been taken from the large RNA data set (Wadley 
et al. 2007). Here, we consider a subsample of size n = 260 , obtained after join-
ing data from two distinct clusters, whose sizes are 232 and 28, respectively, and 
we neglect the information about group labels in the fitting process. Since, the 
sizes of two clusters are very unbalanced, a feasible robust method is expected 
to fit the majority of the data belonging to the larger cluster and to lead to detect 
the data from the smaller cluster as outliers, as they share a different pattern. Fig-
ure 20 gives the distance plot from WCEM-torus, WCEM-unwrap and WCEM-
dist, under the WN model. We do not appreciate noticeable differences among 
the results. Each technique leads to detect the smaller group, denoted by black 
dots. Actually, in this case, the outcome from the robust analysis allows to cope 
with an unsupervised classification problem and to discriminate between the two 
groups, with a satisfactory balance between swamping and power.

Fig. 19  8TIM protein data. Model based clustering on the torus
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Appendix A: MLE for wrapped unimodal elliptically symmetric 
distributions

Let us consider the circular model

where

m◦(y;�,Σ) =
∑

j∈ℤp

m(y + 2�j;�,Σ),

m(x;�) ∝ |Σ|−1∕2h
(
(x − �)⊤Σ−1(x − �)

)

Fig. 20  RNA data. Weights returned by the WEM (left-right panle). Squared distance plots for the differ-
ent weighting scheme as given by the WCEM-torus, WCEM-unwrap and WCEM-dist (clockwise in the 
other panels). Black dots give points from the smaller outlying cluster. The horizontal line gives the 0.99-
level quantile of the �2

7
 distribution
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is a unimodal elliptically symmetric distribution. The log-likelihood function based 
on an i.i.d. sample y1,… , yn is 

Recall that for given square matrices A and B, both symmetric and positive definite 
we have that 

1. ∇Atr(BA) = B⊤,
2. ∇A log(|A|) =

(
A−1

)⊤,
3. ∇x(x

⊤Ax) = 2Ax.

Let dij(�,Σ) = (yi + 2𝜋j − �)⊤Σ−1(yi + 2𝜋j − �) . Taking the derivatives w.r.t. � and 

Σ−1 , the likelihood equations are

and

where h�(d) = �h(d)∕�d . Let

𝓁
◦(�,Σ) =

n∑

i=1

logm◦(yi;�,Σ)

=

n∑

i=1

log
∑

j∈ℤp

m(yi + 2𝜋j;�,Σ)

∝

n∑

i=1

log
∑

j∈ℤp

|Σ|−
1

2 h
[
(yi + 2𝜋j − �)⊤Σ−1(yi + 2𝜋j − �)

]

=
n

2
log |Σ−1| +

n∑

i=1

log
∑

j∈ℤp

h
[
tr
(
(yi + 2𝜋j − �)(yi + 2𝜋j − �)⊤Σ−1

)]

∇�𝓁
◦(�,Σ) =

n�

i=1

∇� log
�

j∈ℤp

h(dij(�,Σ))

=

n�

i=1

∑
j∈ℤp ∇�h(dij(�,Σ))
∑

k∈ℤp h(dik(�,Σ))

= 2

n�

i=1

∑
j∈ℤp h

�(dij(�,Σ))Σ
−1(yi + 2�j − �)

∑
k∈ℤp h(dik(�,Σ))

∇Σ−1𝓁
◦(�,Σ) =

n

2
Σ⊤ +

n�

i=1

∇Σ−1 log
�

j∈ℤp

h(dij(�,Σ))

=
n

2
Σ +

n�

i=1

∑
j∈ℤp ∇Σ−1h(dij(�,Σ))
∑

k∈ℤp h(dik(�,Σ))

=
n

2
Σ +

n�

i=1

∑
j∈ℤp h

�(dij(�,Σ))(yi + 2𝜋j − �)(yi + 2𝜋j − �)⊤

∑
k∈ℤp h(dik(�,Σ))

,
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then, the MLE (�̂, Σ̂) is the solution to the (set of) fixed point equations

The WN distribution corresponds to h(t) = exp
(
−

t

2

)
 . Since, h�(t) = −

1

2
h(d) then

and the estimating equations simplify to

with

Appendix B: EM algorithm for WN estimation

Given, an i.i.d. sample (y1,… , yn) from a WN distribution, in the EM algorithm the 
wrapping coefficients j are considered as latent variables and the observed torus 
data yi s as being incomplete, that is yi  assumed to be one component of the pair 
(yi,�i) , where �i = (�ij ∶ j ∈ ℤ

p) is the associated latent wrapping coefficients label 
vector. Then, the MLE for � = (�,Σ) is the result of the EM algorithm based on the 
complete log-likelihood function

In the expectation step (E-step), we evaluate the conditional expectation of (25) 
given the observed data and the current parameters value � by computing the condi-
tional probability that yi has j as wrapping coefficients vector, that is

vij =
h�(dij(�,Σ))∑

k∈ℤp h(dik(�,Σ))
.

� =

∑n

i=1

∑
j∈ℤp vij(yi + 2𝜋j)

∑n

i=1

∑
k∈ℤp vik

Σ = −
2

n

n�

i=1

�

j∈ℤp

vij(yi + 2𝜋j − �)(yi + 2𝜋j − �)⊤.

vij = −
1

2

h(dij)∑
k∈ℤp h(dik)

= −
1

2

m(yi + 2�j;�,Σ)
∑

k∈ℤp m(yi + 2�k;�,Σ)
.

� =
1

n

n∑

i=1

∑

j∈ℤp

𝜔ij(yi + 2𝜋j)

Σ =
1

n

n∑

i=1

∑

j∈ℤp

𝜔ij(yi + 2𝜋j − �)(yi + 2𝜋j − �)⊤ .

�ij =
m(yi + 2�j;�,Σ)

∑
k∈ℤp m(yi + 2�k;�,Σ)

.

(25)�c(�) =

n∑

i=1

∑

j∈ℤp

�ij logm(yi + 2�j;�).
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parameters estimation is carried out in the maximization step (M-step) solving the 
set of (complete) likelihood equations

with u(yi + 2�j;�) = ∇� logm(y + 2�j;�) . An alternative estimation strategy can 
be based on a CEM algorithm leading to an approximated solution. At each itera-
tion, a Classification step (C-step) is performed after the E-step, that provides crispy 
assignments. Let

then, set �ij = 1 when j = ĵi , �ij = 0 otherwise. As a result, the torus data yi are 
unwrapped to (fitted) linear data x̂i = yi + 2𝜋 ĵi . It is easy to see that the M-step sim-
plifies to

both the procedures are iterated until some convergence criterion is fulfilled, that 
could be based on the changes in the likelihood or in fitted parameter values (Nodehi 
et al. 2021).
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ĵi = argmaxj∈ℤp𝜔ij,

n∑

i=1

u(x̂i;�) = 0.



1 3

Weighted likelihood methods for robust fitting of wrapped…

Chakraborty, S., Wong, S.W.K.: BAMBI: an R package for fitting bivariate angular mixture models. J. 
Stat. Softw. 99(11), 1–69 (2021)

Chang, M., Artymiuk, P., Wu, X., et  al.: Human triosephosphate isomerase deficiency resulting from 
mutation of phe-240. Am J Hum Genet 52, 1260 (1993)

Coles, S.: Inference for circular distributions and processes. Stat. Comput. 8(2), 105–113 (1998)
Cremers, J., Klugkist, I.: One direction? A tutorial for circular data analysis using r with examples in cog-

nitive psychology. Front. Psychol., p. 2040 (2018)
Davies, P.L., Gather, U.: Breakdown and groups. Ann. Stat. 33(3), 977–1035 (2005)
Davies, P.L., Gather, U.: Addendum to the discussion of “breakdown and groups”. Ann. Stat., pp. 1577–

1579 (2006)
Eltzner, B., Huckermann, S., Mardia, K.: Torus principal component analysis with applications to RNA 

structure. Ann. Appl. Stat. 12(2), 1332–1359 (2018)
Farcomeni, A., Greco, L.: Robust Methods for Data Reduction. CRC Press (2016)
Fisher, N., Lee, A.: Time series analysis of circular data. J. R. Stat. Soc. B 56, 327–339 (1994)
Greco, L., Agostinelli, C.: Weighted likelihood mixture modeling and model-based clustering. Stat. Com-

put. 30(2), 255–277 (2020)
Greco, L., Lucadamo, A., Agostinelli, C.: Weighted likelihood latent class linear regression. Stat. Meth-

ods Appl., pp. 1–36 (2020)
Greco, L., Saraceno, G., Agostinelli, C.: Robust fitting of a wrapped normal model to multivariate circu-

lar data and outlier detection. Stats 4(2), 454–471 (2021)
Greco, L., Novi Inverardi, P., Agostinelli, C.: Finite mixtures of multivariate wrapped normal distribu-

tions for model based clustering of p-torus data. J. Comput. Graph. Stat. 32(3), 1215–1228 (2022)
He, X., Simpson, D.G.: Robust direction estimation. Ann. Stat. 20(1), 351–369 (1992)
Huber, P., Ronchetti, E.: Robust Statistics. Wiley, London (2009)
Jammalamadaka, S., SenGupta, A.: Topics in Circular Statistics, Multivariate Analysis, vol. 5. World 

Scientific, Singapore (2001)
Jona Lasinio, G., Gelfand, A., Jona Lasinio, M.: Spatial analysis of wave direction data using wrapped 

Gaussian processes. Ann. Appl. Stat. 6(4), 1478–1498 (2012)
Ko, D., Guttorp, P.: Robustness of estimators for directional data. Ann. Stat., pp. 609–618 (1988)
Kurz, G., Gilitschenski, I., Hanebeck, U.D.: Efficient evaluation of the probability density function of a 

wrapped normal distribution. In: 2014 Sensor Data Fusion: Trends, pp. 1–5. Solutions, Applications 
(SDF), IEEE (2014)

Lenth, R.V.: Robust measures of location for directional data. Technometrics 23(1), 77–81 (1981)
Lindsay, B.: Efficiency versus robustness: the case for minimum hellinger distance and related methods. 

Ann. Stat. 22, 1018–1114 (1994)
Lund, U.: Cluster analysis for directional data. Commun. Stat. Simul. Comput. 28(4), 1001–1009 (1999)
Mardia, K.: Statistics of Directional Data. Academic Press (1972)
Mardia, K., Jupp, P.: Directional Statistics. Wiley, New York (2000)
Mardia, K., Taylor, C., Subramaniam, G.: Protein bioinformatics and mixtures of bivariate von mises 

distributions for angular data. Biometrics 63(2), 505–512 (2007)
Mardia, K., Kent, J., Zhang, Z., et al.: Mixtures of concentrated multivariate sine distributions with appli-

cations to bioinformatics. J. Appl. Stat. 39(11), 2475–2492 (2012)
Mardia, K.V., Frellsen, J.: Statistics of bivariate von mises distributions. In: Bayesian Methods in Struc-

tural Bioinformatics. Springer, p. 159–178 (2012)
Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley Online Library (2000b)
Markatou, M., Basu, A., Lindsay, B.G.: Weighted likelihood equations with bootstrap root search. J. Am. 

Stat. Assoc. 93(442), 740–750 (1998)
Maronna, R.A., Martin, R.D., Yohai, V.J., et al.: Robust Statistics: Theory and Methods (with R). Wiley, 

London (2019)
Munkres, J.R.: Elements of Algebraic Topology. CRC Press (2018)
Nodehi, A., Golalizadeh, M., Maadooliat, M., et al.: Estimation of parameters in multivariate wrapped 

models for data on ap-torus. Comput. Stat. 36, 193–215 (2021)
Park, C., Basu, A.: The generalized Kullback–Leibler divergence and robust inference. J. Stat. Comput. 

Simul. 73(5), 311–332 (2003)
Park, C., Basu, A., Lindsay, B.: The residual adjustment function and weighted likelihood: a graphi-

cal interpretation of robustness of minimum disparity estimators. Comput. Stat. Data Anal. 39(1), 
21–33 (2002)

Pewsey, A., Neuhäuser, M., Ruxton, G.: Circular Statistics in R. Oxford University Press, Oxford (2013)



 C. Agostinelli et al.

1 3

Prestele, C.: Credit portfolio modelling with elliptically contoured distributions. Ph.D. thesis, Institute for 
Finance Mathematics, University of Ulm (2007)

R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical 
Computing, Vienna, Austria (2021), https:// www.R- proje ct. org/

Ranalli, M., Maruotti, A.: Model-based clustering for noisy longitudinal circular data, with application to 
animal movement. Environmetrics 31(2), e2572 (2020)

Rao, B.: Nonparametric Functional Estimation. Academic Press (2014)
Rivest, L.P., Duchesne, T., Nicosia, A., et al.: A general angular regression model for the analysis of data 

on animal movement in ecology. J. R. Stat. Soc.: Ser. C (Appl. Stat.) 65(3), 445–463 (2016)
Rousseeuw, P.J., Hampel, F.R., Ronchetti, E.M., et al.: Robust Statistics: The Approach Based on Influ-

ence Functions. Wiley, London (2011)
Rutishauser, U., Ross, I.B., Mamelak, A.N., et  al.: Human memory strength is predicted by theta-fre-

quency phase-locking of single neurons. Nature 464(7290), 903–907 (2010)
Saraceno, G., Agostinelli, C., Greco, L.: Robust estimation for multivariate wrapped models. Metron 

79(2), 225–240 (2021)
Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley, London (2009)
Wadley, L., Keating, K., Duarte, C., et al.: Evaluating and learning from rna pseudotorsional space: quan-

titative validation of a reduced representation for rna structure. J. Mol. Biol. 372(4), 942–957 (2007)
Warren, W.H., Rothman, D.B., Schnapp, B.H., et al.: Wormholes in virtual space: from cognitive maps to 

cognitive graphs. Cognition 166, 152–163 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://www.R-project.org/

	Weighted likelihood methods for robust fitting of wrapped models for p-torus data
	Abstract
	1 Introduction
	2 Maximum likelihood estimation
	3 Outlyingness of torus data
	3.1 The geometric approach

	4 Robust fitting based on WLEE
	4.1 Bandwidth selection
	4.2 Initialization
	4.3 Outliers detection

	5 Properties
	5.1 Asymptotic distribution under the model
	5.2 Influence function

	6 Numerical studies
	7 Real data examples
	7.1 8TIM protein data
	7.2 RNA data

	Appendix A: MLE for wrapped unimodal elliptically symmetric distributions
	Appendix B: EM algorithm for WN estimation
	Acknowledgements 
	References


